- 深度學(xué)習(xí)的發(fā)展歷史 內(nèi)容精選 換一換
-
來自:百科征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、 語音識別 、自然語言處理等其他領(lǐng)域。來自:百科
- 深度學(xué)習(xí)的發(fā)展歷史 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識,其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來的智能世界,數(shù)字化來自:百科
- 深度學(xué)習(xí)的發(fā)展歷史 更多內(nèi)容
-
華為云計(jì)算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科
華為云計(jì)算 云知識 云監(jiān)控 高級功能-查看云服務(wù)歷史監(jiān)控?cái)?shù)據(jù) 云監(jiān)控高級功能-查看云服務(wù)歷史監(jiān)控?cái)?shù)據(jù) 時(shí)間:2021-07-01 16:07:50 云監(jiān)控高級功能-查看云服務(wù)歷史監(jiān)控?cái)?shù)據(jù)。 配置 OBS 桶存儲 云監(jiān)控服務(wù) 各監(jiān)控指標(biāo)的原始數(shù)據(jù)的保留周期為兩天,超過保留周期后原始數(shù)據(jù)將不再保存。您開通對象存儲服務(wù)(Object來自:百科
云知識 數(shù)據(jù)庫技術(shù)的發(fā)展歷程 數(shù)據(jù)庫技術(shù)的發(fā)展歷程 時(shí)間:2021-05-20 15:57:30 數(shù)據(jù)庫 數(shù)據(jù)系統(tǒng) 數(shù)據(jù)管理 數(shù)據(jù)管理是指對數(shù)據(jù)進(jìn)行分類、組織、編碼、存儲、檢索和維護(hù),是數(shù)據(jù)處理的中心問題。數(shù)據(jù)管理在應(yīng)用需求推動下,以軟硬件的飛速發(fā)展為基礎(chǔ),發(fā)展為三個階段:人工管理、文件系統(tǒng)、數(shù)據(jù)庫系統(tǒng)。來自:百科
,還會融入互聯(lián)網(wǎng)的文本數(shù)據(jù)、圖片數(shù)據(jù)、音視頻數(shù)據(jù)等非結(jié)構(gòu)化數(shù)據(jù),對大數(shù)據(jù)平臺匯聚和處理多源、多種類數(shù)據(jù)提出了新的要求。 實(shí)現(xiàn)數(shù)據(jù)全生命周期管控 實(shí)現(xiàn)“數(shù)據(jù)模型標(biāo)準(zhǔn)化、數(shù)據(jù)關(guān)系脈絡(luò)化、數(shù)據(jù)加工可視化、數(shù)據(jù)質(zhì)量度量化”,將多源、多種類的各部門數(shù)據(jù)數(shù)據(jù)加工成標(biāo)準(zhǔn)、清潔的數(shù)據(jù)資產(chǎn)供業(yè)務(wù)使用。來自:百科
- 深度學(xué)習(xí)歷史
- 深度學(xué)習(xí)的發(fā)展歷程
- WebAssembly 的發(fā)展歷史概述
- OSPF的歷史與發(fā)展
- 容器化學(xué)習(xí)——從容器的發(fā)展歷史理解容器的本質(zhì)
- WebAssembly 的發(fā)展歷史概述
- 服務(wù)器發(fā)展歷史
- 預(yù)訓(xùn)練模型發(fā)展歷史
- 編織人工智能:機(jī)器學(xué)習(xí)發(fā)展歷史與關(guān)鍵技術(shù)全解析
- 《深入理解AutoML和AutoDL:構(gòu)建自動化機(jī)器學(xué)習(xí)與深度學(xué)習(xí)平臺》 —1.4 深度學(xué)習(xí)的發(fā)展