- 深度學(xué)習(xí)的3個(gè)基礎(chǔ) 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科
- 深度學(xué)習(xí)的3個(gè)基礎(chǔ) 相關(guān)內(nèi)容
-
來(lái)自:百科本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科
- 深度學(xué)習(xí)的3個(gè)基礎(chǔ) 更多內(nèi)容
-
云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科華為云計(jì)算 云知識(shí) CBR中的基礎(chǔ)概念 CBR中的基礎(chǔ)概念 時(shí)間:2021-07-02 10:50:39 CBR中的常用基礎(chǔ)概念有: 1. 存儲(chǔ)庫(kù) 云備份使用存儲(chǔ)庫(kù)來(lái)存放備份,存儲(chǔ)庫(kù)分為備份存儲(chǔ)庫(kù)和復(fù)制存儲(chǔ)庫(kù)兩種。 2. 復(fù)制 復(fù)制是指將一個(gè)區(qū)域已經(jīng)生成的備份 數(shù)據(jù)復(fù)制 到另一個(gè)區(qū)域。來(lái)自:百科角色: IAM 最初提供的一種根據(jù)用戶的工作職能定義權(quán)限的粗粒度授權(quán)機(jī)制。該機(jī)制以服務(wù)為粒度,提供有限的服務(wù)相關(guān)角色用于授權(quán) IAM最新提供的一種細(xì)粒度授權(quán)的能力,可以精確到具體服務(wù)的操作、資源以及請(qǐng)求條件等?;诓呗?span style='color:#C7000B'>的授權(quán)是一種更加靈活的授權(quán)方式,能夠滿足企業(yè)對(duì)權(quán)限最小化的安全管控要求。來(lái)自:專題
- 深度學(xué)習(xí)基礎(chǔ)與技巧
- 深度學(xué)習(xí)基礎(chǔ)-優(yōu)化算法詳解
- 深度學(xué)習(xí)基礎(chǔ)-損失函數(shù)詳解
- 深度學(xué)習(xí)基礎(chǔ)-機(jī)器學(xué)習(xí)基本原理
- 深度學(xué)習(xí)前常見的python基礎(chǔ)知識(shí)
- 對(duì)深度學(xué)習(xí)概念的基礎(chǔ)理解與認(rèn)識(shí)
- 深度學(xué)習(xí)基礎(chǔ):1.張量的基本操作
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—3 MXNet基礎(chǔ)
- 深度學(xué)習(xí)算法:從基礎(chǔ)到實(shí)踐
- 深度學(xué)習(xí)基礎(chǔ):7.模型的保存與加載/學(xué)習(xí)率調(diào)度