- 深度學(xué)習(xí) 中文語義理解 安裝 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 計(jì)算機(jī)視覺基礎(chǔ):語義理解 計(jì)算機(jī)視覺基礎(chǔ):語義理解 時(shí)間:2020-12-15 10:08:35 通過學(xué)習(xí),您將掌握計(jì)算機(jī)視覺的基本概念和主要知識(shí)點(diǎn),并且對(duì)于計(jì)算機(jī)視覺和廣義人工智能的方法論有一定的認(rèn)識(shí),初步具備判斷計(jì)算機(jī)視覺是否適合解決特定問題的能力。 講師介紹來自:百科
- 深度學(xué)習(xí) 中文語義理解 安裝 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科來自:百科
- 深度學(xué)習(xí) 中文語義理解 安裝 更多內(nèi)容
-
AI模型從云上部署到端側(cè),為AI模型創(chuàng)造更多的應(yīng)用場(chǎng)景和產(chǎn)業(yè)價(jià)值。 課程簡(jiǎn)介 為了解決真實(shí)世界中的問題,我們的深度學(xué)習(xí)算法需要巨量的數(shù)據(jù),同時(shí)也需要機(jī)器擁有處理龐大數(shù)據(jù)的能力,在現(xiàn)實(shí)世界中部署神經(jīng)網(wǎng)絡(luò)需要平衡效率和能耗以及成本的關(guān)系。本課程介紹了能耗高效的深度學(xué)習(xí)。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí):來自:百科
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科
、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來自:百科
圖像識(shí)別 ( Image Recognition ),基于深度學(xué)習(xí)和大數(shù)據(jù),利用計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解,以識(shí)別各種不同模式的目標(biāo)和對(duì)象的技術(shù)?;?span style='color:#C7000B'>深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺內(nèi)容,提供多種物體、場(chǎng)景和概念標(biāo)簽,具備目標(biāo)檢測(cè)和屬性識(shí)別等能力,幫助客戶準(zhǔn)確識(shí)別和理解圖像內(nèi)容,打造智能化業(yè)務(wù)系統(tǒng),提升業(yè)務(wù)效率。來自:百科
本課程主要內(nèi)容包括:自然語言處理技術(shù)原理、實(shí)戰(zhàn):構(gòu)建專屬智能問答機(jī)器人。 課程目標(biāo) 通過本課程的學(xué)習(xí)使學(xué)員掌握深度學(xué)習(xí)平臺(tái)應(yīng)用及入門深度學(xué)習(xí)。 課程大綱 第1節(jié) 導(dǎo)讀&往期內(nèi)容回顧 第2節(jié) 自然語言處理概述 第3節(jié) NLP技術(shù)及應(yīng)用介紹 第4節(jié) 文本語義分析演示 第5節(jié) 對(duì)話機(jī)器人演示 第6節(jié) 課程總結(jié) 華為云 面來自:百科
個(gè)標(biāo)簽內(nèi)容,語義內(nèi)容非常豐富。更智能、準(zhǔn)確的理解圖像內(nèi)容,讓智能相冊(cè)管理、照片檢索和分類、基于場(chǎng)景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1 圖像標(biāo)簽 示例圖 名人識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)算法來自:百科
- 深度學(xué)習(xí)|語義分割labelme的安裝和使用教程
- 圖像語義分析:深度理解圖像中的信息
- 《深度學(xué)習(xí)》中文版:背后的故事
- 深度學(xué)習(xí) --- 深入理解RNN結(jié)構(gòu)
- 深度學(xué)習(xí)之快速理解卷積層
- TensorFlow2深度學(xué)習(xí)實(shí)戰(zhàn)(十三): 語義分割算法 SegNet 實(shí)戰(zhàn)
- 一文理解什么是深度學(xué)習(xí)?
- 深度學(xué)習(xí)組件—CUDA驅(qū)動(dòng)安裝
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:圖像語義分割與對(duì)象檢測(cè)
- 對(duì)深度學(xué)習(xí)概念的基礎(chǔ)理解與認(rèn)識(shí)