- 深度學(xué)習(xí) 中文語(yǔ)義理解 安裝 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 計(jì)算機(jī)視覺(jué)基礎(chǔ):語(yǔ)義理解 計(jì)算機(jī)視覺(jué)基礎(chǔ):語(yǔ)義理解 時(shí)間:2020-12-15 10:08:35 通過(guò)學(xué)習(xí),您將掌握計(jì)算機(jī)視覺(jué)的基本概念和主要知識(shí)點(diǎn),并且對(duì)于計(jì)算機(jī)視覺(jué)和廣義人工智能的方法論有一定的認(rèn)識(shí),初步具備判斷計(jì)算機(jī)視覺(jué)是否適合解決特定問(wèn)題的能力。 講師介紹來(lái)自:百科
- 深度學(xué)習(xí) 中文語(yǔ)義理解 安裝 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類(lèi)型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科
- 深度學(xué)習(xí) 中文語(yǔ)義理解 安裝 更多內(nèi)容
-
從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺(jué)翻譯、刷臉支付、人臉考勤……不知不覺(jué),深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科AI模型從云上部署到端側(cè),為AI模型創(chuàng)造更多的應(yīng)用場(chǎng)景和產(chǎn)業(yè)價(jià)值。 課程簡(jiǎn)介 為了解決真實(shí)世界中的問(wèn)題,我們的深度學(xué)習(xí)算法需要巨量的數(shù)據(jù),同時(shí)也需要機(jī)器擁有處理龐大數(shù)據(jù)的能力,在現(xiàn)實(shí)世界中部署神經(jīng)網(wǎng)絡(luò)需要平衡效率和能耗以及成本的關(guān)系。本課程介紹了能耗高效的深度學(xué)習(xí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí):來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科可根據(jù)提示對(duì)圖片中的目標(biāo)進(jìn)行分割,常在輔助標(biāo)注、AIGC等場(chǎng)景應(yīng)用。 盤(pán)古多模態(tài)大模型功能優(yōu)勢(shì) 原生支持中文 億級(jí)中文圖文,百萬(wàn)中文關(guān)鍵詞,更佳中文理解能力。 精準(zhǔn)語(yǔ)義理解 精準(zhǔn)圖文描述,對(duì)齊語(yǔ)義理解,智能語(yǔ)境識(shí)別。 更具自然美感 多模態(tài)多尺度訓(xùn)練,逼近自然美感生成內(nèi)容。 更強(qiáng)泛化性 強(qiáng)大泛來(lái)自:專(zhuān)題、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科不同行業(yè)的各類(lèi)需求。 高效精準(zhǔn):可快速分析大數(shù)據(jù)量的文本,深度理解文本語(yǔ)義,更加精準(zhǔn)的挖掘出文本中的關(guān)鍵信息。 簡(jiǎn)單易用:簡(jiǎn)單易用的API接口。無(wú)需下載SDK、購(gòu)買(mǎi)服務(wù)器,支持跨平臺(tái)調(diào)用。豐富的產(chǎn)品種類(lèi),可一站式開(kāi)通、部署。 穩(wěn)定可靠:故障自動(dòng)遷移,服務(wù)可用性達(dá)99.95%,保障業(yè)務(wù)連續(xù)。數(shù)據(jù)多副本,數(shù)據(jù)持久性99來(lái)自:專(zhuān)題圖像識(shí)別 ( Image Recognition ),基于深度學(xué)習(xí)和大數(shù)據(jù),利用計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解,以識(shí)別各種不同模式的目標(biāo)和對(duì)象的技術(shù)?;?span style='color:#C7000B'>深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺(jué)內(nèi)容,提供多種物體、場(chǎng)景和概念標(biāo)簽,具備目標(biāo)檢測(cè)和屬性識(shí)別等能力,幫助客戶(hù)準(zhǔn)確識(shí)別和理解圖像內(nèi)容,打造智能化業(yè)務(wù)系統(tǒng),提升業(yè)務(wù)效率。來(lái)自:百科本課程主要內(nèi)容包括:自然語(yǔ)言處理技術(shù)原理、實(shí)戰(zhàn):構(gòu)建專(zhuān)屬智能問(wèn)答機(jī)器人。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí)使學(xué)員掌握深度學(xué)習(xí)平臺(tái)應(yīng)用及入門(mén)深度學(xué)習(xí)。 課程大綱 第1節(jié) 導(dǎo)讀&往期內(nèi)容回顧 第2節(jié) 自然語(yǔ)言處理概述 第3節(jié) NLP技術(shù)及應(yīng)用介紹 第4節(jié) 文本語(yǔ)義分析演示 第5節(jié) 對(duì)話(huà)機(jī)器人演示 第6節(jié) 課程總結(jié) 華為云 面來(lái)自:百科個(gè)標(biāo)簽內(nèi)容,語(yǔ)義內(nèi)容非常豐富。更智能、準(zhǔn)確的理解圖像內(nèi)容,讓智能相冊(cè)管理、照片檢索和分類(lèi)、基于場(chǎng)景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1 圖像標(biāo)簽 示例圖 名人識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)算法來(lái)自:百科
- 深度學(xué)習(xí)|語(yǔ)義分割labelme的安裝和使用教程
- 圖像語(yǔ)義分析:深度理解圖像中的信息
- 《深度學(xué)習(xí)》中文版:背后的故事
- 深度學(xué)習(xí) --- 深入理解RNN結(jié)構(gòu)
- 深度學(xué)習(xí)之快速理解卷積層
- TensorFlow2深度學(xué)習(xí)實(shí)戰(zhàn)(十三): 語(yǔ)義分割算法 SegNet 實(shí)戰(zhàn)
- 一文理解什么是深度學(xué)習(xí)?
- 深度學(xué)習(xí)組件—CUDA驅(qū)動(dòng)安裝
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:圖像語(yǔ)義分割與對(duì)象檢測(cè)
- 對(duì)深度學(xué)習(xí)概念的基礎(chǔ)理解與認(rèn)識(shí)