- 深度學(xué)習(xí) 長短期記憶模型LSTM 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí) 長短期記憶模型LSTM 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科來自:百科
- 深度學(xué)習(xí) 長短期記憶模型LSTM 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科
ModelArts模型訓(xùn)練 ModelArts模型訓(xùn)練簡介 ModelArts模型訓(xùn)練,俗稱“建模”,指通過分析手段、方法和技巧對準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測、評價(jià)等結(jié)果。來自:專題
針對客戶的特定場景需求,定制垂直領(lǐng)域的語音識(shí)別模型,識(shí)別效果更精確 支持熱詞 針對專業(yè)詞匯,支持上傳至熱詞表,增加專業(yè)詞匯的語音識(shí)別準(zhǔn)確率 一句話識(shí)別 對時(shí)長較短(1分鐘以內(nèi))的語音進(jìn)行識(shí)別,提供良好的可擴(kuò)展性,支持熱詞定制 錄音文件識(shí)別 對于錄制的長語音進(jìn)行識(shí)別,轉(zhuǎn)寫成文字,提供不同領(lǐng)域模型,具備良好的可擴(kuò)展性,支持熱詞定制來自:百科
- RNN長短期記憶(LSTM)是如何工作的?
- 深度學(xué)習(xí)算法中的長短期記憶網(wǎng)絡(luò)(Long Short-Term Memory)
- 智能體(Agent)的記憶架構(gòu):深入解析短期記憶與長期記憶
- LSTM網(wǎng)絡(luò)的基礎(chǔ)知識(shí):介紹長短期記憶網(wǎng)絡(luò)的基本概念和結(jié)構(gòu)
- 《LSTM與HMM:序列建模領(lǐng)域的雙雄對決》
- LSTM的記憶單元:詳細(xì)解讀LSTM中的記憶單元結(jié)構(gòu)及其作用
- 超生動(dòng)圖解LSTM和GPU,一文讀懂循環(huán)神經(jīng)網(wǎng)絡(luò)!
- 利用Mindspore 深度學(xué)習(xí)框架和LSTM實(shí)現(xiàn)股票預(yù)測模型
- 《TensorFlow自然語言處理》—1.4.2 深度學(xué)習(xí)和NLP的當(dāng)前狀況
- 《深度LSTM vs 普通LSTM:訓(xùn)練與效果的深度剖析》