- 深度估計(jì)深度學(xué)習(xí) 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度估計(jì)深度學(xué)習(xí) 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科類的水平。本課程將介紹深度學(xué)習(xí)算法的知識(shí)。 課程簡(jiǎn)介 本課程將會(huì)探討深度學(xué)習(xí)中的基礎(chǔ)理論、算法、使用方法、技巧與不同的深度學(xué)習(xí)模型。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、掌握神經(jīng)網(wǎng)絡(luò)基礎(chǔ)理論。 2、掌握深度學(xué)習(xí)中數(shù)據(jù)處理的基本方法。 3、掌握深度學(xué)習(xí)訓(xùn)練中調(diào)參、模型選擇的基本方法。來自:百科
- 深度估計(jì)深度學(xué)習(xí) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來自:百科深度學(xué)習(xí)計(jì)算服務(wù)平臺(tái)是中科弘云面向有定制化AI需求的行業(yè)用戶,推出的 AI開發(fā)平臺(tái) ,提供從樣本標(biāo)注、模型訓(xùn)練、模型部署的一站式AI開發(fā)能力,幫助用戶快速訓(xùn)練和部署模型,管理全周期AI工作流。平臺(tái)為開發(fā)者設(shè)計(jì)了眾多可幫助降低開發(fā)成本的開發(fā)工具與框架,例如AI數(shù)據(jù)集、AI模型與算力等。來自:其他對(duì)行業(yè)結(jié)構(gòu)化數(shù)據(jù)進(jìn)行多維度分析,通過數(shù)據(jù)清洗、數(shù)據(jù)轉(zhuǎn)換、數(shù)據(jù)構(gòu)建進(jìn)行數(shù)理邏輯推算,輸出結(jié)果,深度挖掘數(shù)據(jù)規(guī)律和背后趨勢(shì),更好實(shí)現(xiàn)智能決策 盤古CV大模型功能介紹 基礎(chǔ)模型 支持圖像分類、物體檢測(cè)、姿態(tài)估計(jì)等近10種微調(diào)任務(wù),覆蓋大部分視覺感知場(chǎng)景。 萬物檢測(cè) 可根據(jù)提示對(duì)圖片中的目標(biāo)進(jìn)行來自:專題署模型。 2、深度學(xué)習(xí)計(jì)算服務(wù)平臺(tái)實(shí)施交付結(jié)合智算服務(wù)器、存儲(chǔ)、網(wǎng)絡(luò)等硬件環(huán)境,設(shè)計(jì)深度學(xué)習(xí)計(jì)算服務(wù)平臺(tái)部署架構(gòu),并根據(jù)用戶要求完成深度學(xué)習(xí)平臺(tái)軟件的調(diào)試、安裝和部署,保證軟件功能長(zhǎng)期穩(wěn)定運(yùn)行,包括設(shè)備安裝、環(huán)境配置、網(wǎng)絡(luò)配置、安裝部署、功能測(cè)試等。 3、深度學(xué)習(xí)計(jì)算服務(wù)平臺(tái)運(yùn)行來自:其他需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來自:百科主要特點(diǎn)是構(gòu)建智能優(yōu)化器內(nèi)核,實(shí)現(xiàn)基數(shù)估計(jì)、計(jì)劃選擇準(zhǔn)確率以及端到端業(yè)務(wù)性能倍數(shù)提升。突破了基于AI的參數(shù)自調(diào)優(yōu)、慢SQL診斷、索引推薦等關(guān)鍵技術(shù),使得調(diào)優(yōu)任務(wù)的時(shí)間代價(jià)由天級(jí)降為分鐘級(jí);構(gòu)建庫內(nèi)原生AI引擎,為用戶提供數(shù)據(jù)庫內(nèi)置的機(jī)器學(xué)習(xí)與推理能力,性能提升5-20倍。雖然被制來自:百科
- OpenCV中的深度學(xué)習(xí)姿態(tài)估計(jì)
- 單目人體深度估計(jì)
- 深度感知:深度估計(jì)技術(shù)在增強(qiáng)現(xiàn)實(shí)中的應(yīng)用
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.1.3 深度學(xué)習(xí)
- 深度學(xué)習(xí)
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2 深度學(xué)習(xí)框架
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 深度學(xué)習(xí)框架(PyTorch)
- 深度學(xué)習(xí)修煉(一)——從機(jī)器學(xué)習(xí)轉(zhuǎn)向深度學(xué)習(xí)
- 【深度學(xué)習(xí)】嘿馬深度學(xué)習(xí)筆記第1篇:深度學(xué)習(xí),1.1 深度學(xué)習(xí)與機(jī)器學(xué)習(xí)的區(qū)別【附代碼文檔】
- ArrayList 深度學(xué)習(xí)