- 超分辨率數(shù)據(jù)集深度學(xué)習(xí) 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類(lèi)型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 超分辨率數(shù)據(jù)集深度學(xué)習(xí) 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺(jué)翻譯、刷臉支付、人臉考勤……不知不覺(jué),深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
- 超分辨率數(shù)據(jù)集深度學(xué)習(xí) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科華為云計(jì)算 云知識(shí) 什么是數(shù)據(jù)集 什么是數(shù)據(jù)集 時(shí)間:2021-04-02 15:07:19 數(shù)據(jù)集,又稱(chēng)為資料集、數(shù)據(jù)集合或資料集合,是一種由數(shù)據(jù)所組成的集合。數(shù)據(jù)反映了真實(shí)世界的狀況。數(shù)據(jù)集作為深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的輸入,對(duì)AI開(kāi)發(fā)有至關(guān)重要的意義。 ModelArts 數(shù)據(jù)管理來(lái)自:百科全球首個(gè)精度超過(guò)傳統(tǒng)數(shù)值預(yù)報(bào)方法的AI預(yù)測(cè)模型,預(yù)測(cè)速度提升10000倍 了解詳情 盤(pán)古NLP大模型 業(yè)界首個(gè)超千億參數(shù)的中文預(yù)訓(xùn)練大模型,利用大數(shù)據(jù)預(yù)訓(xùn)練、對(duì)多源豐富知識(shí)相結(jié)合,并通過(guò)持續(xù)學(xué)習(xí)吸收海量文本數(shù)據(jù),不斷提升模型的效果。 了解詳情 盤(pán)古CV大模型 基于海量圖像、視頻數(shù)據(jù)和盤(pán)古獨(dú)特來(lái)自:專(zhuān)題快速調(diào)用 OCR 服務(wù)PAI 更多詳情 AI開(kāi)發(fā)平臺(tái) ModelArts ModelArts商超商品識(shí)別教程 ModelArts商超商品識(shí)別教程 更多詳情 最新上線 云小課 關(guān)注您想要的知識(shí) 讓您學(xué)習(xí)無(wú)壓力 云小課匯總 華為云KYON之L2CG 本文介紹KYON獨(dú)創(chuàng)的L2CG,打通大二層來(lái)自:專(zhuān)題,重新優(yōu)化代碼。模型開(kāi)發(fā)部分過(guò)程可見(jiàn)下圖。 開(kāi)發(fā)階段:準(zhǔn)備并配置環(huán)境,調(diào)試代碼,使代碼能夠開(kāi)始進(jìn)行深度學(xué)習(xí)訓(xùn)練,推薦在ModelArts開(kāi)發(fā)環(huán)境中調(diào)試。 實(shí)驗(yàn)階段:調(diào)整數(shù)據(jù)集、調(diào)整超參等,通過(guò)多輪實(shí)驗(yàn),訓(xùn)練出理想的模型,推薦在ModelArts訓(xùn)練中進(jìn)行實(shí)驗(yàn)。 ModelArts來(lái)自:專(zhuān)題保障我們業(yè)務(wù)基本能跑起來(lái)。” 中國(guó)經(jīng)濟(jì)信息社首席架構(gòu)師李超團(tuán)隊(duì)的工作聽(tīng)起來(lái)頗具極客范,也很有成就感。 但讓業(yè)務(wù)跑起來(lái)只是第一步,產(chǎn)品研發(fā)、業(yè)務(wù)創(chuàng)新才是李超團(tuán)隊(duì)的最終目標(biāo)。然而,目前團(tuán)隊(duì)的大量精力都用在了折騰開(kāi)源工具上。據(jù)李超介紹,這些東西對(duì)技術(shù)要求太高,且組件復(fù)雜、賬號(hào)混亂,對(duì)運(yùn)來(lái)自:百科華為云計(jì)算 云知識(shí) 使用ROMA Connect實(shí)現(xiàn)應(yīng)用與數(shù)據(jù)集成 使用ROMA Connect實(shí)現(xiàn)應(yīng)用與數(shù)據(jù)集成 時(shí)間:2020-12-01 14:55:02 實(shí)驗(yàn)指導(dǎo)用戶短時(shí)間內(nèi)熟悉并利用云服務(wù)快速實(shí)現(xiàn)應(yīng)用與數(shù)據(jù)的集成。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 ① 熟悉華為云VPC/E CS /RD來(lái)自:百科0%~50% 極速轉(zhuǎn)碼 全球化region部署,柔性擴(kuò)容,支持并行轉(zhuǎn)碼加速,滿足緊急發(fā)布需求 智享超清 提業(yè)界領(lǐng)先的視頻AI處理算法,視頻超高清體驗(yàn)一直在線 視頻AI 基于深度學(xué)習(xí)、計(jì)算機(jī)視覺(jué)技術(shù)和海量數(shù)據(jù),提供AI服務(wù),提高效率 媒體處理 功能 媒體處理 MPC旨在提供經(jīng)濟(jì)、高效來(lái)自:專(zhuān)題
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:圖像超分辨率與去噪
- 普通視頻轉(zhuǎn)高清:10個(gè)基于深度學(xué)習(xí)的超分辨率神經(jīng)網(wǎng)絡(luò)
- GEE數(shù)據(jù)集——瑞士0.1米超清分辨率影像數(shù)據(jù)
- 深度學(xué)習(xí)煉丹-超參數(shù)調(diào)整
- 深度學(xué)習(xí)修煉(二)——數(shù)據(jù)集的加載
- 圖像超分辨率
- GEE數(shù)據(jù)集:冰島10米分辨率DEM數(shù)據(jù)集
- 超分辨率圖像重建:讓圖像更加清晰
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—2.4 MNIST數(shù)據(jù)集
- 圖像超分辨率重建數(shù)據(jù)集看這篇就夠了——訓(xùn)練 + 測(cè)試 | 【云盤(pán)分享】