- inference階段的深度學(xué)習(xí) 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科來(lái)自:百科
- inference階段的深度學(xué)習(xí) 相關(guān)內(nèi)容
-
本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科的深度學(xué)習(xí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級(jí)神經(jīng)網(wǎng)絡(luò) 第4章來(lái)自:百科
- inference階段的深度學(xué)習(xí) 更多內(nèi)容
-
云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科華為云計(jì)算 云知識(shí) 大數(shù)據(jù)的發(fā)展可以分為哪些階段 大數(shù)據(jù)的發(fā)展可以分為哪些階段 時(shí)間:2021-05-24 09:10:47 大數(shù)據(jù) 大數(shù)據(jù)技術(shù)的發(fā)展可以按照其特點(diǎn),分為大數(shù)據(jù)1.0、大數(shù)據(jù)2.0、大數(shù)據(jù)3.0階段,目前我們正處于大數(shù)據(jù)3.0階段。 大數(shù)據(jù)1.0:?jiǎn)我?span style='color:#C7000B'>的批計(jì)算 大數(shù)據(jù)2.0:融合計(jì)算來(lái)自:百科3、獨(dú)立性差:文件為特定應(yīng)用服務(wù),文件的邏輯結(jié)構(gòu)是針對(duì)具體的應(yīng)用來(lái)設(shè)計(jì)的,數(shù)據(jù)邏輯結(jié)構(gòu)改變時(shí),應(yīng)用程序中文件結(jié)構(gòu)的定義就必須修改。數(shù)據(jù)依賴于應(yīng)用程序,缺乏獨(dú)立性。 4、文件之間是孤立的,不能反映現(xiàn)實(shí)世界事物之間的內(nèi)在聯(lián)系。 從文件系統(tǒng)到數(shù)據(jù)庫(kù)系統(tǒng)標(biāo)志著 數(shù)據(jù)管理 技術(shù)的飛躍。 文中課程 更多精彩課堂、微認(rèn)證、沙箱實(shí)驗(yàn),盡在華為云學(xué)院來(lái)自:百科華為云計(jì)算 云知識(shí) 數(shù)據(jù)庫(kù)設(shè)計(jì)需求分析階段的任務(wù) 數(shù)據(jù)庫(kù)設(shè)計(jì)需求分析階段的任務(wù) 時(shí)間:2021-06-02 09:52:46 數(shù)據(jù)庫(kù) 數(shù)據(jù)庫(kù)設(shè)計(jì)需求分析階段的任務(wù),包括: 1. 對(duì)用戶業(yè)務(wù)行為和流程進(jìn)行調(diào)查,了解用戶對(duì)新系統(tǒng)的期望和目標(biāo),了解目前現(xiàn)存系統(tǒng)的主要問(wèn)題; 2. 系統(tǒng)調(diào)研、收集和分析需求,確定系統(tǒng)開(kāi)發(fā)范圍;來(lái)自:百科云知識(shí) 數(shù)據(jù)庫(kù)需求分析階段的數(shù)據(jù)字典 數(shù)據(jù)庫(kù)需求分析階段的數(shù)據(jù)字典 時(shí)間:2021-06-02 10:01:20 數(shù)據(jù)庫(kù) 在數(shù)據(jù)庫(kù)設(shè)計(jì)的需求分析階段,要求輸出數(shù)據(jù)字典。這里的數(shù)據(jù)字典是進(jìn)行需求分析階段,數(shù)據(jù)收集和數(shù)據(jù)分析所獲得的成果。而不是某個(gè)數(shù)據(jù)庫(kù)產(chǎn)品中的DD(Data Dictionary)。來(lái)自:百科數(shù)據(jù)庫(kù)需求分析階段的數(shù)據(jù)字典包含什么 數(shù)據(jù)庫(kù)需求分析階段的數(shù)據(jù)字典包含什么 時(shí)間:2021-06-02 10:03:51 數(shù)據(jù)庫(kù) 數(shù)據(jù)字典是對(duì)數(shù)據(jù)的描述,不是數(shù)據(jù)本身。包括: 1. 數(shù)據(jù)項(xiàng) 數(shù)據(jù)項(xiàng)名稱,含義,數(shù)據(jù)類型,長(zhǎng)度,取值范圍,單位,與其他數(shù)據(jù)項(xiàng)邏輯關(guān)系等。 是邏輯設(shè)計(jì)階段模型優(yōu)化的依據(jù)。來(lái)自:百科業(yè)務(wù)系統(tǒng)拆分的服務(wù)組件,根據(jù)網(wǎng)絡(luò)訴求,匹配華為云服務(wù)產(chǎn)品,云上架構(gòu),根據(jù)技術(shù)組件場(chǎng)景需求,對(duì)應(yīng)不同遷移方式。 業(yè)務(wù)應(yīng)用的評(píng)估分析項(xiàng)目 學(xué)習(xí)了解更多可前往查看云學(xué)院《云遷移基礎(chǔ)》課程。 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原來(lái)自:百科
- 深度學(xué)習(xí)的學(xué)習(xí)路線
- Membership Inference Attack
- JVM階段學(xué)習(xí)回顧
- 動(dòng)手學(xué)深度學(xué)習(xí):優(yōu)化與深度學(xué)習(xí)的關(guān)系
- 【深度學(xué)習(xí)】嘿馬深度學(xué)習(xí)筆記第1篇:深度學(xué)習(xí),1.1 深度學(xué)習(xí)與機(jī)器學(xué)習(xí)的區(qū)別【附代碼文檔】
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.1.3 深度學(xué)習(xí)
- 深度學(xué)習(xí) - 深度學(xué)習(xí) (人工神經(jīng)網(wǎng)絡(luò)的研究的概念)
- 深度學(xué)習(xí)算法中的集成學(xué)習(xí)(Ensemble Learning)與深度學(xué)習(xí)的結(jié)合
- 深度學(xué)習(xí)的進(jìn)展
- 深度學(xué)習(xí)