- ds證據(jù)理論 深度學(xué)習(xí) 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- ds證據(jù)理論 深度學(xué)習(xí) 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科來自:百科
- ds證據(jù)理論 深度學(xué)習(xí) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來自:百科支持GPU NVLink技術(shù),實(shí)現(xiàn)GPU之間的直接通信,提升GPU之間的數(shù)據(jù)傳輸效率。能夠提供超高的通用計(jì)算能力,適用于AI深度學(xué)習(xí)、科學(xué)計(jì)算,在深度學(xué)習(xí)訓(xùn)練、科學(xué)計(jì)算、計(jì)算流體動(dòng)力學(xué)、計(jì)算金融、地震分析、分子建模、基因組學(xué)等領(lǐng)域都能表現(xiàn)出巨大的計(jì)算優(yōu)勢(shì)。 P2vs型 彈性云服務(wù)器 的規(guī)格來自:百科我們誠邀與您一起: ●體驗(yàn)和分享最新的ICT技術(shù)在行業(yè)的深度創(chuàng)新和最佳實(shí)踐; ●系統(tǒng)學(xué)習(xí)和深度實(shí)踐機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、鯤鵬、異騰、容器、微服務(wù)、DevOps、數(shù)據(jù)庫、 區(qū)塊鏈 、數(shù)據(jù)通信、移動(dòng)邊緣計(jì)算等ICT開放能力; ●深度參與openEuler、openGauss、MindSpo來自:百科
- 【信息融合】基于matlab BP神經(jīng)網(wǎng)絡(luò)和DS證據(jù)理論不確定性信息融合問題【含Matlab源碼 2112期】
- 華為云深度學(xué)習(xí)理論入門筆記1
- 神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)理論基礎(chǔ)
- 深度學(xué)習(xí):Xavier初始化理論+代碼實(shí)現(xiàn)
- 深度學(xué)習(xí):動(dòng)量梯度下降法理論詳解+代碼實(shí)現(xiàn)
- 【AI理論】深度學(xué)習(xí)筆記 | 第20講:再談三大深度學(xué)習(xí)框架TensorFlow、Keras和PyTorch
- 深度學(xué)習(xí)在故障檢測(cè)中的應(yīng)用:從理論到實(shí)踐
- Spring Cloud Eureka理論深度解析
- 《深度學(xué)習(xí)入門 基于Python的理論與實(shí)現(xiàn)》書中代碼筆記
- 【AI理論】這個(gè)項(xiàng)目火了!各種深度學(xué)習(xí)架構(gòu),模型和技巧的集合