- html訓(xùn)練 內(nèi)容精選 換一換
-
界面右側(cè)上方,展示分身數(shù)字人定制流程。下方展示訓(xùn)練視頻拍攝指導(dǎo)和樣例視頻,包括:拍攝前準(zhǔn)備、拍攝中操作和拍攝后處理,有效指導(dǎo)用戶拍攝生成一段完整可用的訓(xùn)練視頻,用于訓(xùn)練生成分身數(shù)字人。 圖1 定制數(shù)字人形象 上傳分身數(shù)字人訓(xùn)練數(shù)據(jù) 上傳分身數(shù)字人訓(xùn)練數(shù)據(jù) 參數(shù) 參數(shù) 說明 分身數(shù)字人訓(xùn)練數(shù)據(jù)上傳 角色名稱 輸入分身數(shù)字人的角色名稱。來自:專題華為云Stack 8.2版本支持ModelArts。ModelArts平臺是華為的全棧AI平臺,支持AI的本地開發(fā)、遠(yuǎn)程訓(xùn)練,對訓(xùn)練任務(wù)進(jìn)行集中的資源池化管理,實(shí)現(xiàn)分布式并行訓(xùn)練。通過ModelArts平臺,政企客戶可以更方便、快速的上手AI,早一步邁入“智能未來” ModelArts平臺來自:百科
- html訓(xùn)練 相關(guān)內(nèi)容
-
【場景1】 AI計算 關(guān)鍵訴求: ①支持異構(gòu)計算:GPU/Ascend等芯片加速能力 ②縮短訓(xùn)練時間:支持更高的GPU線性加速比及分布式訓(xùn)練,加快訓(xùn)練速度 ③按需付費(fèi)降低成本:按需付費(fèi)降低訓(xùn)練和推理資源預(yù)留成本 ④免運(yùn)維:AI算法工程師即可操作 【場景2】 高性能容器批量計算(Job類任務(wù))來自:百科AI應(yīng)用支持如下幾種場景的導(dǎo)入方式: 從訓(xùn)練中選擇:在ModelArts中創(chuàng)建訓(xùn)練作業(yè),并完成模型訓(xùn)練,在得到滿意的模型后,可以將訓(xùn)練后得到的模型創(chuàng)建為AI應(yīng)用,用于部署服務(wù)。獲取數(shù)據(jù)的問題。 從 OBS 中選擇:如果您使用常用框架在本地完成模型開發(fā)和訓(xùn)練,可以將本地的模型按照模型包規(guī)范上來自:專題
- html訓(xùn)練 更多內(nèi)容
-
時間:2020-09-19 10:18:12 ModelArts是面向AI開發(fā)者的一站式開發(fā)平臺,核心功能是模型訓(xùn)練。Huawei HiLens 偏AI應(yīng)用開發(fā),并實(shí)現(xiàn)端云協(xié)同推理和管理。 您可以使用ModelArts訓(xùn)練算法模型,然后在ModelArts或者Huawei HiLens中轉(zhuǎn)換成Huawei來自:百科
CR服務(wù)二次開發(fā)案例介紹、 基于ModelArts的 OCR 模型訓(xùn)練教程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、熟悉文字識別行業(yè)趨勢挑戰(zhàn)及相關(guān)場景解決辦法; 2、熟悉華為云文字識別OCR知識體系; 3、通過模型訓(xùn)練,了解OCR開發(fā)邏輯。 課程大綱 第1章 OCR服務(wù)介紹 第2章來自:百科
- HTML
- tensorflow學(xué)習(xí):準(zhǔn)備訓(xùn)練數(shù)據(jù)和構(gòu)建訓(xùn)練模型
- PyTorch 訓(xùn)練加速
- 訓(xùn)練優(yōu)化筆記
- 【java_藍(lán)橋杯算法訓(xùn)練】算法訓(xùn)練 阿爾法乘積
- 【java_藍(lán)橋杯算法訓(xùn)練】算法訓(xùn)練 新生舞會
- 訓(xùn)練相關(guān)問題
- 【java_藍(lán)橋杯算法訓(xùn)練 】試題 算法訓(xùn)練 階乘
- 【java_藍(lán)橋杯算法訓(xùn)練】算法訓(xùn)練 斜率計算
- yolov3_darknet53訓(xùn)練自己的訓(xùn)練集