- 字符串壓縮算法 內(nèi)容精選 換一換
-
對(duì)Gorilla壓縮算法進(jìn)行了優(yōu)化,將可以無損轉(zhuǎn)換的數(shù)值轉(zhuǎn)為整數(shù),再根據(jù)數(shù)據(jù)特點(diǎn),選擇最合適的數(shù)據(jù)壓縮算法。 String數(shù)據(jù)類型:采用了壓縮效率更好的ZSTD壓縮算法,并根據(jù)待壓縮數(shù)據(jù)的Length使用不同Level的編碼方法。 Timestamp數(shù)據(jù)類型:采用差量壓縮方法,最后還來自:專題針對(duì)IoT設(shè)備內(nèi)存空間小的問題,LiteAI應(yīng)用了模型量化技術(shù),將模型參數(shù)從32比特浮點(diǎn)量化到8比特定點(diǎn),實(shí)現(xiàn)75%模型壓縮;實(shí)現(xiàn)更合理的內(nèi)存管理算法,最大化內(nèi)存復(fù)用率,絕大部分場景下達(dá)到內(nèi)存使用下限值;提供模型壓縮及聚類算法供開發(fā)者選擇,進(jìn)一步減少內(nèi)存占用。 l LiteAI采用算子融合、SIMD指令加速、循環(huán)來自:百科
- 字符串壓縮算法 相關(guān)內(nèi)容
-
產(chǎn)品優(yōu)勢 低成本 時(shí)間戳采用delta編碼進(jìn)行壓縮,數(shù)據(jù)值采用XOR進(jìn)行壓縮。 存儲(chǔ)與計(jì)算解耦,為IoT場景海量數(shù)據(jù)、動(dòng)態(tài)熱點(diǎn)的數(shù)據(jù)特征量身打造,方便按照并發(fā)度和存儲(chǔ)量按需獨(dú)立擴(kuò)容。 企業(yè)級(jí) 分布式架構(gòu),橫向水平擴(kuò)展。 高壓縮率算法,節(jié)約成本的同時(shí),提升查詢速度。 兼容性 兼容OpenTSDB社區(qū)2來自:百科括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級(jí)提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn); 3. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法原理創(chuàng)新; 4. 面向鯤鵬的算法親和優(yōu)化實(shí)踐; 5. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法實(shí)踐。 聽眾收益:來自:百科
- 字符串壓縮算法 更多內(nèi)容
-
行掃描。在這種情況下,多模匹配算法就可以解決一個(gè)字符串中尋找多個(gè)模式字符字串的問題。該算法廣泛應(yīng)用于關(guān)鍵字過濾、入侵檢測、病毒檢測、分詞等場景。多模匹配有多種算法,比較常見的有Trie樹,AC算法和WM算法。 Web應(yīng)用防火墻 利用高效的多模匹配算法,對(duì)請(qǐng)求流量進(jìn)行特征檢測,極大提升了檢測引擎的性能。來自:百科物聯(lián)網(wǎng)的數(shù)據(jù)具備時(shí)間序列特性,如下圖所示。 專為物聯(lián)網(wǎng)時(shí)序數(shù)據(jù)處理優(yōu)化的服務(wù),包括高壓縮比的時(shí)序數(shù)據(jù)存儲(chǔ),高效的時(shí)序查詢效率,海量時(shí)間線能力; 海量接入:海量時(shí)間線能力,最大可達(dá)億級(jí)。 時(shí)序存儲(chǔ):列式存儲(chǔ)及專用壓縮算法,高壓縮率。 高效查詢:基于時(shí)間多維度聚合,近實(shí)時(shí)分析查詢。 數(shù)據(jù)可視化 :提供來自:百科