- 數(shù)據(jù)少如何進(jìn)行深度學(xué)習(xí) 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 數(shù)據(jù)少如何進(jìn)行深度學(xué)習(xí) 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科好不過(guò)了。如何使用深度學(xué)習(xí)框架MindSpore進(jìn)行模型開(kāi)發(fā)與訓(xùn)練?又如何在ModelArts平臺(tái)訓(xùn)練一個(gè)可以用于識(shí)別手寫(xiě)數(shù)字的模型呢?讓我們來(lái)一探究竟吧。 數(shù)據(jù)集的選擇與準(zhǔn)備 機(jī)器學(xué)習(xí)中的傳統(tǒng)機(jī)器學(xué)習(xí)和深度學(xué)習(xí)都是數(shù)據(jù)驅(qū)動(dòng)的研究領(lǐng)域,需要基于大量的歷史數(shù)據(jù)對(duì)模型進(jìn)行訓(xùn)練,再使用來(lái)自:百科
- 數(shù)據(jù)少如何進(jìn)行深度學(xué)習(xí) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) 時(shí)間:2020-12-15 15:23:12 深度學(xué)習(xí)是一種以人工神經(jīng)網(wǎng)絡(luò)為架構(gòu),對(duì)數(shù)據(jù)進(jìn)行表征學(xué)習(xí)的算法。目前,在圖像、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理、強(qiáng)化學(xué)習(xí)等許多技術(shù)領(lǐng)域中,深度學(xué)習(xí)獲得了廣泛的應(yīng)用,并且在某些問(wèn)來(lái)自:百科
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科
華為云計(jì)算 云知識(shí) SQL如何進(jìn)行數(shù)據(jù)分組 SQL如何進(jìn)行數(shù)據(jù)分組 時(shí)間:2021-07-02 10:30:48 數(shù)據(jù)庫(kù) 云數(shù)據(jù)庫(kù) 云數(shù)據(jù)庫(kù) GaussDB (for MySQL) 數(shù)據(jù)庫(kù)查詢中,分組是一個(gè)非常重要的應(yīng)用。分組是指將數(shù)據(jù)表中的記錄以某個(gè)或者某些列為標(biāo)準(zhǔn),值相等的劃分為一組。來(lái)自:百科
實(shí)現(xiàn)售賣(mài)機(jī)的智能化運(yùn)營(yíng),是一個(gè)貫穿數(shù)據(jù)開(kāi)發(fā)、數(shù)據(jù)采集、數(shù)據(jù)挖掘應(yīng)用的完整項(xiàng)目。 目標(biāo)學(xué)員 希望了解AI與IoT技術(shù)結(jié)合場(chǎng)景實(shí)現(xiàn)方法并掌握其開(kāi)發(fā)能力的人員。 課程目標(biāo) 通過(guò)學(xué)習(xí)本課程,學(xué)員可以對(duì)設(shè)備接入IoT平臺(tái)上報(bào)數(shù)據(jù),基于AI對(duì)設(shè)備上報(bào)數(shù)據(jù)進(jìn)行分析預(yù)測(cè)的實(shí)際應(yīng)用場(chǎng)景有一個(gè)了解。來(lái)自:百科
、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科
,從而進(jìn)行包抄逮捕。時(shí)序數(shù)據(jù)的分析一般依賴于時(shí)序數(shù)據(jù)庫(kù),數(shù)據(jù)保存至?xí)r序數(shù)據(jù)庫(kù)進(jìn)行分類與排序,再由其他應(yīng)用或服務(wù)從數(shù)據(jù)庫(kù)中獲取進(jìn)行進(jìn)一步處理。 離線數(shù)據(jù) 還有一些數(shù)據(jù),對(duì)于實(shí)時(shí)性和有序性的要求都沒(méi)那么強(qiáng),分析時(shí)數(shù)據(jù)已經(jīng)固化,我們稱之為離線數(shù)據(jù)。典型的離線數(shù)據(jù)包括產(chǎn)品銷(xiāo)量數(shù)據(jù)、景點(diǎn)游來(lái)自:百科
- 如何使用機(jī)器學(xué)習(xí)進(jìn)行測(cè)井?dāng)?shù)據(jù)分析
- 數(shù)據(jù)樣本少?數(shù)據(jù)不出局?聯(lián)邦學(xué)習(xí)專治各種不服!
- 數(shù)據(jù)樣本少?數(shù)據(jù)不出局?聯(lián)邦學(xué)習(xí)專治各種不服!
- 使用深度學(xué)習(xí)進(jìn)行油藏預(yù)測(cè)和優(yōu)化
- 深度學(xué)習(xí)煉丹-數(shù)據(jù)增強(qiáng)
- 【MySQL】學(xué)習(xí)如何通過(guò)DQL進(jìn)行數(shù)據(jù)庫(kù)數(shù)據(jù)的基本查詢
- 【MySQL】學(xué)習(xí)如何通過(guò)DQL進(jìn)行數(shù)據(jù)庫(kù)數(shù)據(jù)的條件查詢
- xmind思維導(dǎo)圖之如何進(jìn)行深度工作
- 如何在ModelArt運(yùn)行深度學(xué)習(xí)案例
- 深度學(xué)習(xí)如何助力“運(yùn)維配置神器”?
- 開(kāi)發(fā)深度學(xué)習(xí)模型
- 在哪里可以進(jìn)行課程學(xué)習(xí)?
- 在哪里可以進(jìn)行課程學(xué)習(xí)?
- 部署NGC容器環(huán)境以構(gòu)建深度學(xué)習(xí)開(kāi)發(fā)環(huán)境
- 如何進(jìn)行數(shù)據(jù)找回
- 使用TICS可信聯(lián)邦學(xué)習(xí)進(jìn)行聯(lián)邦建模
- 深度診斷ECS
- 無(wú)監(jiān)督領(lǐng)域知識(shí)數(shù)據(jù)量無(wú)法支持增量預(yù)訓(xùn)練,如何進(jìn)行模型學(xué)習(xí)
- ModelArts SDK、OBS SDK和MoXing的區(qū)別是什么?
- 學(xué)習(xí)目標(biāo)