- 人工智能中的大數(shù)據(jù)分析 內(nèi)容精選 換一換
-
;從地圖喜好的維度,統(tǒng)計(jì)玩家對(duì)地圖的使用情況 查看詳情 展開(kāi)詳情 相關(guān)課程產(chǎn)品推薦 完成實(shí)名認(rèn)證即可開(kāi)始學(xué)習(xí) 車(chē)聯(lián)網(wǎng)大數(shù)據(jù)駕駛行為分析 作為智能交通的基礎(chǔ),車(chē)聯(lián)網(wǎng)的應(yīng)用預(yù)示著工業(yè)技術(shù),交通效率,出行方式的重大改變。微認(rèn)證為您揭秘車(chē)聯(lián)網(wǎng)大數(shù)據(jù)背后的密碼,實(shí)現(xiàn)科學(xué)高效的車(chē)隊(duì)管理 作為來(lái)自:專(zhuān)題完全可控的一站式企業(yè)級(jí)大數(shù)據(jù)集群云服務(wù),完全兼容開(kāi)源接口,結(jié)合 華為云計(jì)算 、存儲(chǔ)優(yōu)勢(shì)及大數(shù)據(jù)行業(yè)經(jīng)驗(yàn),為客戶提供高性能、低成本、靈活易用的全棧大數(shù)據(jù)平臺(tái),輕松運(yùn)行Hadoop、Spark、HBase、Kafka、Storm等大數(shù)據(jù)組件,并具備在后續(xù)根據(jù)業(yè)務(wù)需要進(jìn)行定制開(kāi)發(fā)的能力,幫來(lái)自:百科
- 人工智能中的大數(shù)據(jù)分析 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 大數(shù)據(jù)是什么 大數(shù)據(jù)是什么 時(shí)間:2021-05-24 08:54:48 大數(shù)據(jù) 大數(shù)據(jù)是由巨型數(shù)據(jù)集組成的,這些數(shù)據(jù)集大小常超出人類(lèi)在可接受時(shí)間下的收集、使用、管理和處理能力。 大數(shù)據(jù)也可以定義為來(lái)自各種來(lái)源的大量非結(jié)構(gòu)化和結(jié)構(gòu)化數(shù)據(jù)。 文中課程 更多精彩課來(lái)自:百科華為云計(jì)算 云知識(shí) 大數(shù)據(jù)1.0的關(guān)鍵技術(shù)是什么 大數(shù)據(jù)1.0的關(guān)鍵技術(shù)是什么 時(shí)間:2021-05-24 09:20:33 大數(shù)據(jù) 在大數(shù)據(jù)1.0時(shí)代,互聯(lián)網(wǎng)的發(fā)展需要對(duì)海量的非結(jié)構(gòu)化數(shù)據(jù)進(jìn)行分布式存儲(chǔ)、并行計(jì)算,所以用到的關(guān)鍵技術(shù)有: 1. 批處理計(jì)算框架MapReduce;來(lái)自:百科
- 人工智能中的大數(shù)據(jù)分析 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 傳統(tǒng)數(shù)倉(cāng)在大數(shù)據(jù)時(shí)代的劣勢(shì) 傳統(tǒng)數(shù)倉(cāng)在大數(shù)據(jù)時(shí)代的劣勢(shì) 時(shí)間:2021-03-03 16:46:24 數(shù)據(jù)倉(cāng)庫(kù) 數(shù)據(jù)倉(cāng)庫(kù)是指從業(yè)務(wù)數(shù)據(jù)中創(chuàng)建信息數(shù)據(jù)庫(kù),并針對(duì)決策和分析進(jìn)行優(yōu)化。華為云數(shù)據(jù)倉(cāng)庫(kù)服務(wù)實(shí)時(shí)、簡(jiǎn)單、安全可信的企業(yè)級(jí)融合數(shù)據(jù)倉(cāng)庫(kù),可借助DWS Expr來(lái)自:百科
云知識(shí) 大數(shù)據(jù)的發(fā)展可以分為哪些階段 大數(shù)據(jù)的發(fā)展可以分為哪些階段 時(shí)間:2021-05-24 09:10:47 大數(shù)據(jù) 大數(shù)據(jù)技術(shù)的發(fā)展可以按照其特點(diǎn),分為大數(shù)據(jù)1.0、大數(shù)據(jù)2.0、大數(shù)據(jù)3.0階段,目前我們正處于大數(shù)據(jù)3.0階段。 大數(shù)據(jù)1.0:?jiǎn)我?span style='color:#C7000B'>的批計(jì)算 大數(shù)據(jù)2.0:融合計(jì)算來(lái)自:百科
“大”即物聯(lián)網(wǎng)數(shù)據(jù)體量大,我們經(jīng)常聽(tīng)到的一個(gè)經(jīng)典的案例,即GE發(fā)動(dòng)機(jī)有成百上千個(gè)傳感器,毫秒級(jí)頻度產(chǎn)生各種數(shù)據(jù)。一次飛機(jī)的飛行就可以超過(guò)1TB的數(shù)據(jù)量。很多工業(yè)場(chǎng)景產(chǎn)生的數(shù)據(jù)量可能會(huì)更大。 “小”即物聯(lián)網(wǎng)數(shù)據(jù)的價(jià)值密度小,或者也可以理解為要從海量的數(shù)據(jù)中找到價(jià)值的信息是一個(gè)比較難的事情。 “高”即物來(lái)自:百科
在答辯現(xiàn)場(chǎng),每支隊(duì)伍面對(duì)評(píng)委有15分鐘的陳述時(shí)間和10分鐘的問(wèn)答時(shí)間。評(píng)委將根據(jù)選手的技術(shù)思路、理論深度和現(xiàn)場(chǎng)表現(xiàn)進(jìn)行綜合評(píng)分。 (2) 決賽分?jǐn)?shù)將根據(jù)參賽隊(duì)伍的算法成績(jī)和答辯成績(jī)加權(quán)得出,評(píng)分權(quán)重為復(fù)賽B階段70%,決賽答辯30%。 決賽地點(diǎn)和時(shí)間安排另行通知,受邀參加決賽的選手在決賽期間的食宿由大賽組委會(huì)安排,往返交通費(fèi)及其他費(fèi)用自理。來(lái)自:百科
云知識(shí) 大數(shù)據(jù)入門(mén)與應(yīng)用 大數(shù)據(jù)入門(mén)與應(yīng)用 時(shí)間:2020-12-07 15:12:38 大數(shù)據(jù)(big data)是什么?本課程無(wú)特殊預(yù)備知識(shí)要求,從大數(shù)據(jù)的產(chǎn)生到大數(shù)據(jù)的應(yīng)用,為您揭開(kāi)大數(shù)據(jù)神秘的面紗。 課程簡(jiǎn)介 本次課程的學(xué)習(xí),我們首先從“大數(shù)據(jù)是什么”開(kāi)始,到華為大數(shù)據(jù)解決來(lái)自:百科
物聯(lián)網(wǎng)資產(chǎn)模型感知 物聯(lián)網(wǎng)數(shù)據(jù)分析服務(wù)是以物聯(lián)網(wǎng)資產(chǎn)模型為中心的分析服務(wù),不同于公有云上的通用型大數(shù)據(jù)相關(guān)產(chǎn)品,物聯(lián)網(wǎng)數(shù)據(jù)分析服務(wù)與資產(chǎn)模型深度整合,在相關(guān)數(shù)據(jù)分析作業(yè)的定義中,開(kāi)發(fā)者可以方便引用物聯(lián)網(wǎng)的模型數(shù)據(jù),大大提升數(shù)據(jù)分析的效率。 一站式開(kāi)發(fā)體驗(yàn) 大數(shù)據(jù)開(kāi)發(fā)技術(shù)門(mén)檻較高,而華為云物聯(lián)來(lái)自:百科
課程目標(biāo) 學(xué)完本課程后,學(xué)員可以了解大數(shù)據(jù)主流技術(shù)、大數(shù)據(jù)場(chǎng)景化解決方案以及大數(shù)據(jù)應(yīng)用開(kāi)發(fā)。 課程大綱 1. 大數(shù)據(jù)主流技術(shù) 2. 大數(shù)據(jù)場(chǎng)景化解決方案 3. 大數(shù)據(jù)應(yīng)用開(kāi)發(fā) 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。來(lái)自:百科
華為云計(jì)算 云知識(shí) 大數(shù)據(jù)有哪些特點(diǎn) 大數(shù)據(jù)有哪些特點(diǎn) 時(shí)間:2021-05-24 09:01:23 大數(shù)據(jù) 大數(shù)據(jù)具有以下4個(gè)顯著的特點(diǎn): Volume 數(shù)據(jù)量巨大:TB->PB->EB; Variety 數(shù)據(jù)種類(lèi)多:結(jié)構(gòu)化->非結(jié)構(gòu)化; Velocity 數(shù)據(jù)速度快:年增長(zhǎng)率超過(guò)60%。非實(shí)時(shí)->實(shí)時(shí);來(lái)自:百科
如何盡可能的使用各種分析手段,從海量的物聯(lián)網(wǎng)數(shù)據(jù)中挖掘有價(jià)值的信息。 提升處理效率 面對(duì)IoT設(shè)備持續(xù)不斷的數(shù)據(jù)注入,如何在數(shù)據(jù)處理的各個(gè)環(huán)節(jié)(接入,清洗,入庫(kù),分析,呈現(xiàn))實(shí)現(xiàn)最佳處性能。 管理數(shù)據(jù)質(zhì)量 如何建立一套可靠的數(shù)據(jù)質(zhì)量評(píng)估體系,并對(duì)質(zhì)量差的數(shù)據(jù)進(jìn)行合適的處理(糾偏,忽略等)。來(lái)自:百科
- 生活中的大數(shù)據(jù)分析(二)
- 生活中的大數(shù)據(jù)分析(三)
- 石油煉化行業(yè)中的人工智能技術(shù)與大數(shù)據(jù)分析
- Python在金融大數(shù)據(jù)分析中的應(yīng)用
- 人工智能在測(cè)井?dāng)?shù)據(jù)分析中的數(shù)據(jù)驅(qū)動(dòng)方法
- 石油煉化中的數(shù)據(jù)分析和預(yù)測(cè):人工智能的應(yīng)用
- 大數(shù)據(jù)分析的主要算法
- 什么是大數(shù)據(jù)分析?
- 大數(shù)據(jù)分析中的機(jī)器學(xué)習(xí)基礎(chǔ):從原理到實(shí)踐
- 人工智能在石油煉化中的數(shù)據(jù)分析與決策支持