- 數(shù)據(jù)倉庫分層數(shù)據(jù)集市 內(nèi)容精選 換一換
-
SQL語句進(jìn)行數(shù)據(jù)加載、數(shù)據(jù)查詢和數(shù)據(jù)分析。 Data Studio是一款用于連接數(shù)據(jù)庫的客戶端工具,有著豐富的GUI界面,能夠管理數(shù)據(jù)庫和數(shù)據(jù)庫對(duì)象,編輯、運(yùn)行、調(diào)試SQL腳本,查看執(zhí)行計(jì)劃等。 數(shù)據(jù)倉庫 服務(wù) GaussDB (DWS) GaussDB(DWS)是一款具備分析及混來自:百科和門檻,讓數(shù)據(jù)倉庫實(shí)實(shí)在在地走進(jìn)千萬家大中小企業(yè),讓數(shù)據(jù)為企業(yè)的發(fā)展和決策提供其應(yīng)有的價(jià)值。 云數(shù)據(jù)庫 GaussDB 華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫,企業(yè)核心數(shù)據(jù)上云信賴之選。該產(chǎn)品具備企業(yè)級(jí)復(fù)雜事務(wù)混合負(fù)載能力,同時(shí)支持分布式事務(wù),同城跨AZ部署,數(shù)據(jù)0丟失,支持100來自:百科
- 數(shù)據(jù)倉庫分層數(shù)據(jù)集市 相關(guān)內(nèi)容
-
集群高可用設(shè)計(jì) 第5章 數(shù)據(jù)庫高級(jí)特性介紹 第6章 數(shù)據(jù)庫事務(wù)管理 第7章 數(shù)據(jù)庫遷移 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS) GaussDB(DWS)是一款具備分析及混合負(fù)載能力的分布式數(shù)據(jù)庫,支持x86和Kunpeng硬件架構(gòu),支持行存儲(chǔ)與列存儲(chǔ),提供GB~PB級(jí)數(shù)據(jù)分析能力、多模分來自:百科如何通過Data Studio連接數(shù)據(jù)倉庫? EI第7課 如何通過Data Studio連接數(shù)據(jù)倉庫? 時(shí)間:2021-07-09 10:59:36 云小課 Data Studio是一款運(yùn)行在Windows操作系統(tǒng)上的SQL客戶端工具,有著豐富的GUI界面,能夠管理數(shù)據(jù)庫和數(shù)據(jù)庫對(duì)象,編輯、運(yùn)行來自:百科
- 數(shù)據(jù)倉庫分層數(shù)據(jù)集市 更多內(nèi)容
-
好用的數(shù)據(jù)處理方案-數(shù)據(jù)工坊DWR 好用的數(shù)據(jù)處理方案-數(shù)據(jù)工坊DWR 數(shù)據(jù)工坊DWR是開放的近數(shù)據(jù)處理服務(wù)。支持易用的工作流編排和開放生態(tài)的數(shù)據(jù)處理算子市場(chǎng),能夠?qū)崿F(xiàn)靈活的數(shù)據(jù)及時(shí)處理。 數(shù)據(jù)工坊DWR是開放的近數(shù)據(jù)處理服務(wù)。支持易用的工作流編排和開放生態(tài)的數(shù)據(jù)處理算子市場(chǎng),能夠?qū)崿F(xiàn)靈活的數(shù)據(jù)及時(shí)處理。來自:專題集任務(wù),可采集數(shù)據(jù)源中的技術(shù)元數(shù)據(jù)。支持自定義業(yè)務(wù)元模型,批量導(dǎo)入業(yè)務(wù)元數(shù)據(jù),關(guān)聯(lián)業(yè)務(wù)和技術(shù)元數(shù)據(jù)、全鏈路的血緣管理和應(yīng)用。 圖6全鏈路數(shù)據(jù)血緣 數(shù)據(jù)地圖 數(shù)據(jù)地圖圍繞數(shù)據(jù)搜索,服務(wù)于數(shù)據(jù)分析、數(shù)據(jù)開發(fā)、數(shù)據(jù)挖掘、數(shù)據(jù)運(yùn)營等數(shù)據(jù)表的使用者和擁有者,提供方便快捷的數(shù)據(jù)搜索服務(wù),擁有功能強(qiáng)大的血緣信息及影響分析。來自:百科數(shù)據(jù)架構(gòu)產(chǎn)品功能 數(shù)據(jù)架構(gòu):數(shù)據(jù)建??梢暬⒆詣?dòng)化、智能化 數(shù)據(jù)架構(gòu):數(shù)據(jù)建??梢暬?、自動(dòng)化、智能化 DataArts Studio 數(shù)據(jù)架構(gòu)踐行數(shù)據(jù)治理方法論,將數(shù)據(jù)治理行為可視化,打通數(shù)據(jù)基礎(chǔ)層到匯總層、集市層的數(shù)據(jù)處理鏈路,落地數(shù)據(jù)標(biāo)準(zhǔn)和數(shù)據(jù)資產(chǎn),通過關(guān)系建模、維度建模實(shí)現(xiàn)數(shù)據(jù)標(biāo)準(zhǔn)化,通過來自:專題主要面向側(cè)重于復(fù)雜查詢,回答一些“戰(zhàn)略性”的問題。 數(shù)據(jù)處理方面聚焦于數(shù)據(jù)的聚合,匯總,分組計(jì)算,窗口計(jì)算等“分析型”數(shù)據(jù)加工和操作。 從多維度去使用和分析數(shù)據(jù)。 典型的OLAP場(chǎng)景 1.報(bào)表系統(tǒng),CRM系統(tǒng)。 2.金融風(fēng)險(xiǎn)預(yù)測(cè)預(yù)警系統(tǒng)、反洗錢系統(tǒng)。 3.數(shù)據(jù)集市,數(shù)據(jù)倉庫。 文中課程 更多精彩課堂、微認(rèn)證、沙箱實(shí)驗(yàn),盡在華為云學(xué)院來自:百科企業(yè)積累的海量數(shù)據(jù)及各種數(shù)據(jù)資產(chǎn),體量龐大,需高性能大數(shù)據(jù)平臺(tái)支撐進(jìn)行全量數(shù)據(jù)分析和挖掘。依托DWS+BI工具打造全局的、直觀的、關(guān)聯(lián)性的、可視化的運(yùn)營數(shù)字化分析平臺(tái) ,以數(shù)據(jù)分析來驅(qū)動(dòng)業(yè)務(wù)價(jià)值提升及管理提升。 優(yōu)勢(shì) 多源數(shù)據(jù)接入:多源數(shù)據(jù)采集,打破數(shù)據(jù)孤島,形成統(tǒng)一的數(shù)據(jù)展現(xiàn)平臺(tái)。來自:專題會(huì)將數(shù)據(jù)自動(dòng)進(jìn)行解密后再將結(jié)果返回給用戶。 DWS數(shù)據(jù)庫加密 行級(jí)訪問控制 行級(jí)訪問控制特性可以將數(shù)據(jù)庫訪問控制精確到數(shù)據(jù)表行級(jí)別,控制用戶只能訪問數(shù)據(jù)表的特定數(shù)據(jù)行,保證讀寫數(shù)據(jù)的安全。 行級(jí)訪問控制特性可以將數(shù)據(jù)庫訪問控制精確到數(shù)據(jù)表行級(jí)別,控制用戶只能訪問數(shù)據(jù)表的特定數(shù)據(jù)行,保證讀寫數(shù)據(jù)的安全。 使用CREATE來自:專題高效性:Hadoop能夠在節(jié)點(diǎn)之間動(dòng)態(tài)地移動(dòng)數(shù)據(jù),并保證各個(gè)節(jié)點(diǎn)的動(dòng)態(tài)平衡,因此處理速度非常快。 4.高容錯(cuò)性:Hadoop能夠自動(dòng)保存數(shù)據(jù)的多個(gè)副本,并且能夠自動(dòng)將失敗的任務(wù)重新分配。 5.低成本:與一體機(jī)、商用數(shù)據(jù)倉庫以及QlikView、Yonghong Z-Suite等數(shù)據(jù)集市相比,hadoop是開源的,項(xiàng)目的軟件成本因此會(huì)大大降低來自:百科云知識(shí) 智能數(shù)據(jù)湖運(yùn)營平臺(tái)應(yīng)用場(chǎng)景 智能數(shù)據(jù)湖運(yùn)營平臺(tái)應(yīng)用場(chǎng)景 時(shí)間:2020-09-09 09:53:52 一站式的數(shù)據(jù)運(yùn)營治理平臺(tái) 從數(shù)據(jù)采集-規(guī)范設(shè)計(jì)-質(zhì)量監(jiān)控-數(shù)據(jù)清洗-數(shù)據(jù)建模-數(shù)據(jù)聯(lián)接-數(shù)據(jù)整合-數(shù)據(jù)消費(fèi)-;智能分析,一站式數(shù)據(jù)智能運(yùn)營平臺(tái),幫助企業(yè)快速構(gòu)建數(shù)據(jù)運(yùn)營能力。來自:百科圖形化編排,即開即用,輕松上手。 云上數(shù)據(jù)平臺(tái)快速搭建 快速將線下數(shù)據(jù)遷移上云,將數(shù)據(jù)集成到云上大數(shù)據(jù)服務(wù)中,并在DAYU的界面中就可以進(jìn)行快速的數(shù)據(jù)開發(fā)工作,讓企業(yè)數(shù)據(jù)體系的建設(shè)變得如此簡單。 優(yōu)勢(shì) 數(shù)據(jù)集成一鍵式操作 通過在服務(wù)界面配置化操作,可實(shí)現(xiàn)線上線下數(shù)據(jù)快速集成到云數(shù)據(jù)倉庫。 支持多種數(shù)倉服務(wù)類型來自:百科華為云 FusionInsight 智能數(shù)據(jù)湖助力企業(yè)全面演進(jìn)現(xiàn)代數(shù)據(jù)棧,優(yōu)化數(shù)據(jù)服務(wù)和管理 華為云FusionInsight智能數(shù)據(jù)湖助力企業(yè)全面演進(jìn)現(xiàn)代數(shù)據(jù)棧,優(yōu)化數(shù)據(jù)服務(wù)和管理 時(shí)間:2023-11-02 16:50:34 隨著大數(shù)據(jù)技術(shù)的發(fā)展,政企數(shù)字化轉(zhuǎn)型的首要任務(wù)是充分利用大數(shù)據(jù)和分析。然而,來自:百科》中提到大數(shù)據(jù)技術(shù)的四大挑戰(zhàn)與十大趨勢(shì),其中超大規(guī)模數(shù)據(jù)如何組織和管理,數(shù)據(jù)量指數(shù)級(jí)增長時(shí)效性差,數(shù)據(jù)如何打破多源異構(gòu)造成的隔閡,從單域走向跨域數(shù)據(jù)融合,數(shù)據(jù)質(zhì)量評(píng)估等仍是制約大數(shù)據(jù)發(fā)展的瓶頸。大數(shù)據(jù)當(dāng)前該如何應(yīng)對(duì)這些挑戰(zhàn),仍需要可持續(xù)、技術(shù)領(lǐng)先的大數(shù)據(jù)平臺(tái)廠商去解決。 華為云S來自:百科云知識(shí) 如何做好物聯(lián)網(wǎng)數(shù)據(jù)分析? 如何做好物聯(lián)網(wǎng)數(shù)據(jù)分析? 時(shí)間:2021-03-12 14:59:24 物聯(lián)網(wǎng) 大數(shù)據(jù)分析 云計(jì)算 1. 構(gòu)建資產(chǎn)模型是充分“理解”物聯(lián)網(wǎng)數(shù)據(jù)的基礎(chǔ); 2. 物聯(lián)網(wǎng)數(shù)據(jù)處理的關(guān)鍵是對(duì)時(shí)序數(shù)據(jù)的處理; 3. 按數(shù)據(jù)時(shí)效性分層處理,獲得綜合處理效率最大化;來自:百科
- 數(shù)據(jù)倉庫的分層
- 漫談數(shù)據(jù)倉庫的分層架構(gòu)與演進(jìn)
- 2020-08-12:數(shù)據(jù)倉庫是怎么分層的?
- 數(shù)據(jù)倉庫 、數(shù)據(jù)中心相關(guān)技術(shù)知識(shí)和生態(tài)相關(guān)了解
- 數(shù)據(jù)倉庫中數(shù)據(jù)模型以及ETL算法
- 對(duì)比幾個(gè)數(shù)據(jù)概念,數(shù)據(jù)倉庫、數(shù)據(jù)集市、數(shù)據(jù)湖、數(shù)據(jù)中臺(tái)分別是什么?到底有什么區(qū)別?都得做嗎?
- 數(shù)據(jù)挖掘和可視化
- hive數(shù)據(jù)倉庫的設(shè)計(jì),項(xiàng)目中分了幾層,都有什么
- 云計(jì)算行業(yè)應(yīng)用—大數(shù)據(jù)@音視頻(一)
- 大數(shù)據(jù)技術(shù)學(xué)習(xí)——湖倉一體
- 數(shù)據(jù)倉庫服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉庫培訓(xùn)課程_數(shù)據(jù)倉庫視頻教程
- 數(shù)據(jù)倉庫服務(wù) DWS
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉庫數(shù)據(jù)導(dǎo)入導(dǎo)出工具
- 數(shù)據(jù)倉庫服務(wù) DWS入門
- 數(shù)據(jù)倉庫服務(wù) DWS功能
- 數(shù)據(jù)倉庫服務(wù) DWS資源
- 數(shù)據(jù)倉庫服務(wù) DWS定價(jià)
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)數(shù)據(jù)備份恢復(fù)
- 數(shù)據(jù)倉庫服務(wù)應(yīng)用場(chǎng)景_數(shù)據(jù)倉庫服務(wù)客戶案例_GaussDB(DWS)
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)兼容性