- 數(shù)據(jù)倉庫分層數(shù)據(jù)集市 內(nèi)容精選 換一換
-
管的分析型數(shù)據(jù)庫服務(wù)。兼容PostgreSQL生態(tài),您可基于標(biāo)準(zhǔn)SQL,結(jié)合商業(yè)智能工具,經(jīng)濟(jì)高效地挖掘和分析海量數(shù)據(jù)。 報(bào)名學(xué)習(xí) 最新文章 OLTP和OLAP的比較 數(shù)據(jù)倉庫 DWS應(yīng)用案例 數(shù)據(jù)處理耗時(shí)從天級(jí)縮短至小時(shí)級(jí) 數(shù)據(jù)倉庫DWS助力某高校打破數(shù)據(jù)孤島實(shí)現(xiàn)數(shù)據(jù)綜合分析案例來自:百科來自:百科
- 數(shù)據(jù)倉庫分層數(shù)據(jù)集市 相關(guān)內(nèi)容
-
閱讀指引 總覽:無集群總覽頁 DMAX能做什么?:快速數(shù)據(jù)集成 為什么要使用華為云數(shù)據(jù)倉庫服務(wù) GaussDB (DWS) ? 免費(fèi)體驗(yàn) 應(yīng)用場(chǎng)景:云上數(shù)據(jù)平臺(tái)快速搭建 概述 為什么要使用公有云數(shù)據(jù)倉庫服務(wù)GaussDB(DWS) ? 產(chǎn)品優(yōu)勢(shì) DWS輸出流(通過OBS轉(zhuǎn)儲(chǔ)方式):功能描述來自:百科來自:百科
- 數(shù)據(jù)倉庫分層數(shù)據(jù)集市 更多內(nèi)容
-
提供海量數(shù)據(jù)的存儲(chǔ)、挖掘和分析能力。 數(shù)據(jù)倉庫DWS助力終端消費(fèi)云冷熱數(shù)據(jù)關(guān)聯(lián)分析案例 業(yè)務(wù)痛點(diǎn): 探索查詢HDFS 10PB級(jí)歷史數(shù)據(jù),耗時(shí)平均約1小時(shí),全量掃描耗資源。 業(yè)務(wù)系統(tǒng)存儲(chǔ)3個(gè)月熱數(shù)據(jù),3個(gè)月至2年歷史數(shù)據(jù)存儲(chǔ)于HDFS,現(xiàn)有系統(tǒng)對(duì)熱數(shù)據(jù)和歷史數(shù)據(jù)無法進(jìn)行關(guān)聯(lián)分析。來自:百科
華為云計(jì)算 云知識(shí) 數(shù)據(jù)倉庫和數(shù)據(jù)庫的區(qū)別是什么 數(shù)據(jù)倉庫和數(shù)據(jù)庫的區(qū)別是什么 時(shí)間:2021-03-03 11:22:28 數(shù)據(jù)倉庫 數(shù)據(jù)庫 數(shù)據(jù)倉庫是指從業(yè)務(wù)數(shù)據(jù)中創(chuàng)建信息數(shù)據(jù)庫,并針對(duì)決策和分析進(jìn)行優(yōu)化。數(shù)據(jù)庫是數(shù)據(jù)管理的有效技術(shù),是由一批數(shù)據(jù)構(gòu)成的有序集合,這些數(shù)據(jù)被存放在結(jié)構(gòu)化來自:百科
【業(yè)務(wù)遷移難】:現(xiàn)有數(shù)據(jù)庫種類多,業(yè)務(wù)遷移工作量大。 解決方案: 以數(shù)據(jù)倉庫服務(wù)DWS為核心,構(gòu)建統(tǒng)一免運(yùn)維、高可靠的數(shù)據(jù)存儲(chǔ)和分析平臺(tái); 利用DWS匯聚各業(yè)務(wù)數(shù)據(jù)庫數(shù)據(jù),實(shí)現(xiàn)統(tǒng)一數(shù)據(jù)存儲(chǔ)和分析; 結(jié)合BI工具,實(shí)現(xiàn)數(shù)據(jù)可視化。 客戶價(jià)值: 數(shù)據(jù)統(tǒng)一存儲(chǔ),統(tǒng)一分析,支持客戶實(shí)現(xiàn)綜合數(shù)據(jù)分析挖掘;來自:百科
分布式數(shù)據(jù)庫,其主要面向海量數(shù)據(jù)分析場(chǎng)景。 數(shù)據(jù)倉庫遷移 數(shù)據(jù)倉庫是企業(yè)的重要數(shù)據(jù)分析系統(tǒng),隨著業(yè)務(wù)量的增長,自建數(shù)倉性能逐漸不能滿足實(shí)際要求,同時(shí)擴(kuò)展性差、成本高,也使擴(kuò)容極為困難。DWS作為云上企業(yè)級(jí)數(shù)據(jù)倉庫,具備高性能、低成本、易擴(kuò)展等特性,滿足大數(shù)據(jù)時(shí)代企業(yè)數(shù)據(jù)倉庫業(yè)務(wù)訴求。來自:百科
系統(tǒng)面臨的基本挑戰(zhàn)并未發(fā)生重大變化。本課程包含數(shù)據(jù)倉庫、維度建模、事態(tài)表、建模表、總線矩陣、緩慢變化維等多個(gè)數(shù)據(jù)倉庫核心內(nèi)容,適合數(shù)據(jù)倉庫架構(gòu)師、工程師等大數(shù)據(jù)愛好者參與學(xué)習(xí)。 課程目標(biāo) 1.了解數(shù)據(jù)倉庫系統(tǒng)和維度模型: 對(duì)數(shù)據(jù)倉庫和維度模型的基本知識(shí)和建設(shè)方法論 2.了解維度模型:掌握維度表和事實(shí)表的概念和設(shè)計(jì)方法來自:百科
goDB數(shù)據(jù)無法做復(fù)雜關(guān)聯(lián)分析; 數(shù)據(jù)存儲(chǔ)在不同庫,不易進(jìn)行統(tǒng)一管理和維護(hù)。 解決方案: 以數(shù)據(jù)倉庫服務(wù)DWS為核心,構(gòu)建統(tǒng)一免運(yùn)維、高可靠的數(shù)據(jù)存儲(chǔ)和分析平臺(tái); 利用DWS匯聚各類數(shù)據(jù)(業(yè)務(wù)數(shù)據(jù)、用戶行為數(shù)據(jù)、招投標(biāo)數(shù)據(jù)等),實(shí)現(xiàn)一站式數(shù)據(jù)存儲(chǔ)、加工、分析,支撐業(yè)務(wù)數(shù)據(jù)查詢、BI報(bào)表、精準(zhǔn)推薦等場(chǎng)景。來自:百科
數(shù)據(jù)庫有哪些_開源數(shù)據(jù)庫_數(shù)據(jù)庫應(yīng)用系統(tǒng)_數(shù)據(jù)庫的應(yīng)用 連接GaussDB數(shù)據(jù)庫_華為高斯數(shù)據(jù)庫_新建數(shù)據(jù)庫_語法 GaussDB自建數(shù)據(jù)庫_GaussDB數(shù)據(jù)庫_華為高斯自建數(shù)據(jù)庫 免費(fèi)云數(shù)據(jù)庫_免費(fèi)mysql數(shù)據(jù)庫_rds數(shù)據(jù)庫 GaussDB數(shù)據(jù)庫案例_GaussDB數(shù)據(jù)庫的優(yōu)勢(shì)_華為高斯數(shù)據(jù)庫_新建高斯數(shù)據(jù)庫來自:專題
- 數(shù)據(jù)倉庫的分層
- 漫談數(shù)據(jù)倉庫的分層架構(gòu)與演進(jìn)
- 2020-08-12:數(shù)據(jù)倉庫是怎么分層的?
- 數(shù)據(jù)倉庫 、數(shù)據(jù)中心相關(guān)技術(shù)知識(shí)和生態(tài)相關(guān)了解
- 數(shù)據(jù)倉庫中數(shù)據(jù)模型以及ETL算法
- 對(duì)比幾個(gè)數(shù)據(jù)概念,數(shù)據(jù)倉庫、數(shù)據(jù)集市、數(shù)據(jù)湖、數(shù)據(jù)中臺(tái)分別是什么?到底有什么區(qū)別?都得做嗎?
- 數(shù)據(jù)挖掘和可視化
- hive數(shù)據(jù)倉庫的設(shè)計(jì),項(xiàng)目中分了幾層,都有什么
- 云計(jì)算行業(yè)應(yīng)用—大數(shù)據(jù)@音視頻(一)
- 大數(shù)據(jù)技術(shù)學(xué)習(xí)——湖倉一體
- 數(shù)據(jù)倉庫服務(wù)GaussDB(DWS)學(xué)習(xí)與資源_數(shù)據(jù)倉庫培訓(xùn)課程_數(shù)據(jù)倉庫視頻教程
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)數(shù)據(jù)導(dǎo)入導(dǎo)出_數(shù)據(jù)倉庫數(shù)據(jù)導(dǎo)入導(dǎo)出工具
- 數(shù)據(jù)倉庫服務(wù) DWS
- 數(shù)據(jù)倉庫服務(wù) DWS入門
- 數(shù)據(jù)倉庫服務(wù) DWS功能
- 數(shù)據(jù)倉庫服務(wù) DWS資源
- 數(shù)據(jù)倉庫服務(wù) DWS定價(jià)
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)數(shù)據(jù)備份恢復(fù)
- 數(shù)據(jù)倉庫服務(wù)應(yīng)用場(chǎng)景_數(shù)據(jù)倉庫服務(wù)客戶案例_GaussDB(DWS)
- 數(shù)據(jù)倉庫服務(wù) GaussDB(DWS)兼容性