- 神經(jīng)網(wǎng)絡(luò)的人臉識(shí)別方法 內(nèi)容精選 換一換
-
交通物流解決方案 以《交通強(qiáng)國(guó)建設(shè)綱要》為指引,依托華為云的云-邊-端優(yōu)勢(shì),面向交通物流行業(yè)中的城市交通、高速、物流、航空、港口等領(lǐng)域,構(gòu)建“出行一張臉、運(yùn)行一張圖”的全程互聯(lián)大交通體系,協(xié)同各種交通方式,提升運(yùn)營(yíng)服務(wù)效率,最終實(shí)現(xiàn)“人悅于行、物優(yōu)其流” 服務(wù)咨詢 [ 免費(fèi)體驗(yàn)中心 ]免費(fèi)領(lǐng)取體驗(yàn)產(chǎn)品,快速開(kāi)啟云上之旅免費(fèi)來(lái)自:百科使用昇騰 彈性云服務(wù)器 實(shí)現(xiàn)黑白圖像上色... 基于昇騰彈性云服務(wù)器的人工智能應(yīng)用開(kāi)... 使用ModelArts中開(kāi)發(fā)工具學(xué)習(xí)Python 使用MindSpore開(kāi)發(fā)訓(xùn)練模型識(shí)別手寫數(shù)字... 故障識(shí)別與根因定位服務(wù)實(shí)操 使用昇騰彈性云服務(wù)器實(shí)現(xiàn)黑白圖像上色... 基于昇騰彈性云服務(wù)器的人工智能應(yīng)用開(kāi)... 使用昇騰AI彈性云服務(wù)器實(shí)現(xiàn)圖像分類應(yīng)用來(lái)自:專題
- 神經(jīng)網(wǎng)絡(luò)的人臉識(shí)別方法 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科芯片的智能小站,讓邊緣設(shè)備具備處理一定數(shù)據(jù)的能力,可應(yīng)用于以下場(chǎng)景。 人臉識(shí)別 閘機(jī) 基于人臉識(shí)別技術(shù),實(shí)現(xiàn)園區(qū)進(jìn)出門進(jìn)行人臉識(shí)別,可實(shí)現(xiàn)刷臉進(jìn)門、智慧打卡等。 車牌/車型識(shí)別 在園區(qū)、車庫(kù)等進(jìn)出口,對(duì)車輛進(jìn)行車牌、車型識(shí)別,可實(shí)現(xiàn)特定車牌和車型的權(quán)限認(rèn)證。 安全帽檢測(cè) 從視頻監(jiān)控來(lái)自:百科
- 神經(jīng)網(wǎng)絡(luò)的人臉識(shí)別方法 更多內(nèi)容
-
在多種場(chǎng)景下準(zhǔn)確高效地輸出視頻結(jié)構(gòu)化信息,為用戶構(gòu)建強(qiáng)大、全面、便捷的視頻內(nèi)容分析能力。 產(chǎn)品優(yōu)勢(shì) 準(zhǔn)確識(shí)別:利用高精度的人臉檢測(cè)與識(shí)別服務(wù),提供安全可靠的人臉布控、軌跡追蹤、人臉?biāo)阉鞯确?wù) 穩(wěn)定可靠:支持大規(guī)模實(shí)時(shí)視頻分析,支持客戶各種復(fù)雜場(chǎng)景,穩(wěn)定運(yùn)行,持續(xù)為客戶貢獻(xiàn)優(yōu)質(zhì)服務(wù)來(lái)自:百科
視頻人物分析 從指定的URL地址中讀取視頻數(shù)據(jù)時(shí),視頻大小不能超過(guò)1GB。 視頻中人臉?lè)直媛什坏陀?0*40。 支持人臉俯仰角15度、側(cè)臉30度。 同時(shí)檢測(cè)的人臉不大于20個(gè)。 云上人臉提取 支持華為云 OBS 上的視頻文件和華為云VIS的視頻流。 視頻編碼格式要求為H264或者H265。來(lái)自:百科
Engine)作為算子的兵工廠,為基于昇騰AI處理器運(yùn)行的神經(jīng)網(wǎng)絡(luò)提供算子開(kāi)發(fā)能力,用TBE語(yǔ)言編寫的TBE算子來(lái)構(gòu)建各種神經(jīng)網(wǎng)絡(luò)模型。同時(shí),TBE對(duì)算子也提供了封裝調(diào)用能力。在TBE中有一個(gè)優(yōu)化過(guò)的神經(jīng)網(wǎng)絡(luò)TBE標(biāo)準(zhǔn)算子庫(kù),開(kāi)發(fā)者可以直接利用標(biāo)準(zhǔn)算子庫(kù)中的算子實(shí)現(xiàn)高性能的神經(jīng)網(wǎng)絡(luò)計(jì)算。除此之外,TBE也提供來(lái)自:百科
型。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握神經(jīng)網(wǎng)絡(luò)基礎(chǔ)理論。 2、掌握深度學(xué)習(xí)中數(shù)據(jù)處理的基本方法。 3、掌握深度學(xué)習(xí)訓(xùn)練中調(diào)參、模型選擇的基本方法。 4、掌握主流深度學(xué)習(xí)模型的技術(shù)特點(diǎn)。 課程大綱 第1章 神經(jīng)網(wǎng)絡(luò)基礎(chǔ)概念 第2章 數(shù)據(jù)集處理 第3章 網(wǎng)絡(luò)構(gòu)建 第4章來(lái)自:百科
RASR優(yōu)勢(shì) 識(shí)別準(zhǔn)確率高 采用最新一代語(yǔ)音識(shí)別技術(shù),基于深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks,簡(jiǎn)稱DNN)技術(shù),大大提高了抗噪性能,使識(shí)別準(zhǔn)確率顯著提升。 識(shí)別速度快 把語(yǔ)言模型、詞典和聲學(xué)模型統(tǒng)一集成為一個(gè)大的神經(jīng)網(wǎng)絡(luò),同時(shí)在工程上進(jìn)行了大量的優(yōu)化,大幅提升解碼速度,使識(shí)別速度在業(yè)內(nèi)處于領(lǐng)先地位。來(lái)自:百科
DL)是機(jī)器學(xué)習(xí)的一種,機(jī)器學(xué)習(xí)是實(shí)現(xiàn)人工智能的必由之路。深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,包含多個(gè)隱藏層的多層感知器就是深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過(guò)組合低層特征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。來(lái)自:百科
網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員 需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟來(lái)自:百科
算引擎由開(kāi)發(fā)者進(jìn)行自定義來(lái)完成所需要的具體功能。 通過(guò)流程編排器的統(tǒng)一調(diào)用,整個(gè)深度神經(jīng)網(wǎng)絡(luò)應(yīng)用一般包括四個(gè)引擎:數(shù)據(jù)引擎,預(yù)處理引擎,模型推理引擎以及后處理引擎。 1、數(shù)據(jù)引擎主要準(zhǔn)備神經(jīng)網(wǎng)絡(luò)需要的數(shù)據(jù)集(如MNIST數(shù)據(jù)集)和進(jìn)行相應(yīng)數(shù)據(jù)的處理(如圖片過(guò)濾等),作為后續(xù)計(jì)算引擎的數(shù)據(jù)來(lái)源。來(lái)自:百科
時(shí)間:2020-12-08 10:09:21 現(xiàn)在大多數(shù)的AI模型,尤其是計(jì)算視覺(jué)領(lǐng)域的AI模型,都是通過(guò)深度神經(jīng)網(wǎng)絡(luò)來(lái)進(jìn)行構(gòu)建的,從2015年開(kāi)始,學(xué)術(shù)界已經(jīng)開(kāi)始注意到現(xiàn)有的神經(jīng)網(wǎng)絡(luò)模型都是需要較高算力和能好的。并且有大量的研究論文集中于如何將這些AI模型從云上部署到端側(cè),為AI模型創(chuàng)造更多的應(yīng)用場(chǎng)景和產(chǎn)業(yè)價(jià)值。來(lái)自:百科
基于 MetaStudio 控制臺(tái)提交數(shù)字人訓(xùn)練 數(shù)字人應(yīng)用制作 您只需上傳正面照片,在5秒內(nèi)就能生成自己的專屬風(fēng)格化數(shù)字人形象,低門檻數(shù)字人制作,捏臉制作,所見(jiàn)即所得。 數(shù)字人直播服務(wù) MetaStudio虛擬直播讓用戶無(wú)需專業(yè)的動(dòng)作和昂貴不便的面部捕捉設(shè)備,只需普通的攝像頭就能實(shí)現(xiàn)對(duì)人體動(dòng)作和表情的高精度捕捉。來(lái)自:專題
芯片的智能小站,讓邊緣設(shè)備具備處理一定數(shù)據(jù)的能力,可應(yīng)用于以下場(chǎng)景。 人臉識(shí)別閘機(jī) 基于人臉識(shí)別技術(shù),實(shí)現(xiàn)園區(qū)進(jìn)出門進(jìn)行人臉識(shí)別,可實(shí)現(xiàn)刷臉進(jìn)門、智慧打卡等。 車牌/車型識(shí)別 在園區(qū)、車庫(kù)等進(jìn)出口,對(duì)車輛進(jìn)行車牌、車型識(shí)別,可實(shí)現(xiàn)特定車牌和車型的權(quán)限認(rèn)證。 安全帽檢測(cè) 從視頻監(jiān)控來(lái)自:百科
- 【人臉識(shí)別】基于matlab人臉識(shí)別檢測(cè)臉、眼、鼻子和嘴【含Matlab源碼 178期】
- 【人臉識(shí)別】基于matlab ksvd字典學(xué)習(xí)人臉表情識(shí)別【含Matlab源碼 460期】
- 【人臉識(shí)別】基于matlab GUI SVM和PCA人臉識(shí)別【含Matlab源碼 369期】
- 【人臉識(shí)別】基于matlab GUI PCA+SVM人臉識(shí)別(準(zhǔn)確率)【含Matlab源碼 823期】
- 【人臉識(shí)別】基于matlab GUI PCA人臉識(shí)別(識(shí)別率)【含Matlab源碼 802期】
- 【人臉識(shí)別】基于matlab GUI KL變換人臉識(shí)別【含Matlab源碼 859期】
- 【人臉識(shí)別】基于matlab GUI PCA人臉識(shí)別【含Matlab源碼 748期】
- 【人臉識(shí)別】基于matlab GUI BP神經(jīng)網(wǎng)絡(luò)人臉識(shí)別(含識(shí)別率)【含Matlab源碼 891期】
- 【人臉識(shí)別】基于matlab GUI人臉實(shí)時(shí)檢測(cè)與跟蹤【含Matlab源碼 673期】
- 淺談人臉識(shí)別算法