- bp神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)算法 內(nèi)容精選 換一換
-
華為云計(jì)算 云知識(shí) “垃圾”回收算法的三個(gè)組成部分 “垃圾”回收算法的三個(gè)組成部分 時(shí)間:2021-03-09 17:34:57 AI開發(fā)平臺(tái) 人工智能 開發(fā)語言環(huán)境 “垃圾”回收算法的三個(gè)組成部分: 1. 內(nèi)存分配:給新建的對(duì)象分配空間 2. 垃圾識(shí)別:識(shí)別哪些對(duì)象是垃圾 3.來自:百科。 創(chuàng)建算法 進(jìn)入ModelArts控制臺(tái),參考創(chuàng)建算法操作指導(dǎo),創(chuàng)建自定義算法。在配置自定義算法參數(shù)時(shí),需關(guān)注“超參”和“支持的策略”參數(shù)的設(shè)置。 對(duì)于用戶希望優(yōu)化的超參,需在“超參”設(shè)置中定義,可以給定名稱、類型、默認(rèn)值、約束等。 單擊勾選自動(dòng)搜索,用戶為算法設(shè)置算法搜索功能來自:專題
- bp神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)算法 相關(guān)內(nèi)容
-
標(biāo)簽 視頻 OCR 識(shí)別視頻中出現(xiàn)的文字內(nèi)容,包括字幕、彈幕、以及部分自然場(chǎng)景文字和藝術(shù)字等 產(chǎn)品優(yōu)勢(shì) 識(shí)別準(zhǔn)確 采用標(biāo)簽排序?qū)W習(xí)算法與卷積神經(jīng)網(wǎng)絡(luò)算法,識(shí)別精度高,支持實(shí)時(shí)識(shí)別與檢測(cè) 簡(jiǎn)單易用 提供符合RESTful的API訪問接口,使用方便,用戶的業(yè)務(wù)系統(tǒng)可快速集成 層次標(biāo)簽來自:百科參賽者須根據(jù)給定的三個(gè)方向“交通流量預(yù)測(cè)”、“水質(zhì)高光譜污染物分析”和“貨柜車到港預(yù)測(cè)分析”,提交整體解決方案和數(shù)據(jù)分析模型算法。 分析賽賽題必須使用華為云ModelArts平臺(tái)進(jìn)行作品開發(fā)和驗(yàn)證。 特別說明: 由于三道賽題的作品開發(fā)要求有所區(qū)別,答題請(qǐng)通過以下3個(gè)途徑報(bào)名和提交作品。 1、交通流量預(yù)測(cè)可直接來自:百科
- bp神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)算法 更多內(nèi)容
-
文本內(nèi)容審核 ,采用人工智能文本檢測(cè)技術(shù)有效識(shí)別涉黃、涉政、廣告、辱罵、違禁品和灌水文本內(nèi)容,提供定制化的文本敏感 內(nèi)容審核 方案。 清晰度檢測(cè) 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖像是否清晰進(jìn)行預(yù)測(cè),識(shí)別拍攝的企業(yè)表單等原始圖片是清晰還是模糊,廣泛應(yīng)用于上傳照片到業(yè)務(wù)系統(tǒng)中的場(chǎng)景。 扭曲校正 利用圖像處理技術(shù)對(duì)表單類圖像來自:百科網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員 需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟來自:百科通過本課程的學(xué)習(xí),使學(xué)員了解: 1、如何構(gòu)建高效的神經(jīng)網(wǎng)絡(luò)基礎(chǔ)模型。 2、如何學(xué)習(xí)顯著性物體、邊緣等通用屬性。 3、如何利用通用屬性構(gòu)建弱監(jiān)督學(xué)習(xí)模型,并進(jìn)而利用互聯(lián)網(wǎng)數(shù)據(jù)自主完成知識(shí)學(xué)習(xí)。 課程大綱 第1章 什么是開放環(huán)境的自適應(yīng)感知 第2章 面向識(shí)別與理解的神經(jīng)網(wǎng)絡(luò)共性技術(shù) 第3章 通用視覺基元屬性感知來自:百科針對(duì)高層住宅、商業(yè)樓宇,為了禁止電瓶車進(jìn)入,減小因?yàn)殡娖寇嚻鸹饘?dǎo)致的火災(zāi)風(fēng)險(xiǎn),本算法通過實(shí)時(shí)監(jiān)測(cè)電梯內(nèi)的攝像頭畫面,方便樓宇管理人員及時(shí)發(fā)現(xiàn)電瓶車,提高管理效率。 核心功能: 單點(diǎn)抓拍、攝像頭獨(dú)立抓拍、電瓶車檢測(cè)、抓拍檢測(cè)電梯內(nèi)的電瓶車; 產(chǎn)品特點(diǎn): 本算法使用了深度神經(jīng)網(wǎng)絡(luò)技術(shù),通過使用大量實(shí)際場(chǎng)景圖片訓(xùn)練得到的模來自:云商店華為云提供一站式人工智能開發(fā)平臺(tái),通過對(duì)歷史氣象數(shù)據(jù)的高效訓(xùn)練不斷優(yōu)化推理模型,助力短時(shí)間臨近預(yù)報(bào)更加精準(zhǔn) 優(yōu)勢(shì) 算法豐富:提供圖像分類、物體檢測(cè)等幾十種CNN/RNN神經(jīng)網(wǎng)絡(luò)算法模型;提供大量基于開源數(shù)據(jù)集訓(xùn)練好的模型,加速模型訓(xùn)練 使用便捷:無縫對(duì)接華為云的 OBS 存儲(chǔ)和GPU高性能計(jì)算,滿足各類業(yè)務(wù)場(chǎng)景需求來自:百科、基于場(chǎng)景內(nèi)容或者物體的廣告推薦等功能更加準(zhǔn)確。 圖1 圖像標(biāo)簽 示例圖 名人識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)圖片內(nèi)容進(jìn)行檢測(cè),準(zhǔn)確識(shí)別圖像中包含的影視明星及網(wǎng)紅人物。 翻拍識(shí)別 利用深度神經(jīng)網(wǎng)絡(luò)算法判斷條形碼圖片為原始拍攝,還是經(jīng)過二次翻拍、打印翻拍等手法二次處理的圖片。利用翻拍識(shí)別可來自:百科Engine)作為算子的兵工廠,為基于昇騰AI處理器運(yùn)行的神經(jīng)網(wǎng)絡(luò)提供算子開發(fā)能力,用TBE語言編寫的TBE算子來構(gòu)建各種神經(jīng)網(wǎng)絡(luò)模型。同時(shí),TBE對(duì)算子也提供了封裝調(diào)用能力。在TBE中有一個(gè)優(yōu)化過的神經(jīng)網(wǎng)絡(luò)TBE標(biāo)準(zhǔn)算子庫,開發(fā)者可以直接利用標(biāo)準(zhǔn)算子庫中的算子實(shí)現(xiàn)高性能的神經(jīng)網(wǎng)絡(luò)計(jì)算。除此之外,TBE也提供來自:百科
- 預(yù)測(cè)模型之灰色預(yù)測(cè)與BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)
- 【BP回歸預(yù)測(cè)】基于matlab思維進(jìn)化算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)回歸預(yù)測(cè)【含Matlab源碼 2031期】
- 【BP回歸預(yù)測(cè)】基于matlab文化算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)回歸預(yù)測(cè)【含Matlab源碼 2124期】
- 【BP數(shù)據(jù)預(yù)測(cè)】基于matlab灰狼算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)預(yù)測(cè)【含Matlab源碼 1729期】
- 【BP數(shù)據(jù)預(yù)測(cè)】基于matlab鳥群算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)預(yù)測(cè)【含Matlab源碼 1772期】
- 【BP數(shù)據(jù)預(yù)測(cè)】基于matlab灰狼算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)預(yù)測(cè)【含Matlab源碼 1728期】
- 【BP數(shù)據(jù)預(yù)測(cè)】基于matlab人工魚群算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)預(yù)測(cè)【含Matlab源碼 523期】
- 【BP數(shù)據(jù)預(yù)測(cè)】基于matlab斑點(diǎn)鬣狗算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)預(yù)測(cè)【含Matlab 219期】
- 【BP回歸預(yù)測(cè)】基于matlab鯨魚算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)回歸預(yù)測(cè)(多輸入單輸出)【含Matlab源碼 1554期】
- 【BP數(shù)據(jù)預(yù)測(cè)】基于matlab布谷鳥算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)預(yù)測(cè)【含Matlab源碼 1121期】
- 冷負(fù)荷日內(nèi)預(yù)測(cè)算法
- 查詢場(chǎng)景的算法預(yù)測(cè)數(shù)據(jù)
- 關(guān)聯(lián)預(yù)測(cè)算法(Link Prediction)
- 關(guān)聯(lián)預(yù)測(cè)算法(link_prediction)
- 使用時(shí)序預(yù)測(cè)算法實(shí)現(xiàn)訪問流量預(yù)測(cè)
- 創(chuàng)建批量預(yù)測(cè)作業(yè)
- 創(chuàng)建實(shí)時(shí)預(yù)測(cè)作業(yè)
- 華為企業(yè)人工智能高級(jí)開發(fā)者培訓(xùn)
- 化學(xué)/材料
- 使用Tensorflow訓(xùn)練神經(jīng)網(wǎng)絡(luò)