- 聲音識(shí)別深度學(xué)習(xí) 內(nèi)容精選 換一換
-
從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。語音識(shí)別、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺翻譯、刷臉支付、人臉考勤……不知不覺,深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每來自:百科來自:百科
- 聲音識(shí)別深度學(xué)習(xí) 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語音識(shí)別 基于深度學(xué)習(xí)算法的語音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語音數(shù)據(jù)集THCHS30進(jìn)行語音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 聲音識(shí)別深度學(xué)習(xí) 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) 時(shí)間:2020-12-15 15:23:12 深度學(xué)習(xí)是一種以人工神經(jīng)網(wǎng)絡(luò)為架構(gòu),對(duì)數(shù)據(jù)進(jìn)行表征學(xué)習(xí)的算法。目前,在圖像、語音識(shí)別、自然語言處理、強(qiáng)化學(xué)習(xí)等許多技術(shù)領(lǐng)域中,深度學(xué)習(xí)獲得了廣泛的應(yīng)用,并且在某些問來自:百科
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科
視頻標(biāo)簽 (簡(jiǎn)稱VCT),基于深度學(xué)習(xí)對(duì)視頻進(jìn)行場(chǎng)景分類、人物識(shí)別、語音識(shí)別、文字識(shí)別等多維度分析,形成層次化的分類標(biāo)簽。 功能描述 場(chǎng)景概念識(shí)別 基于對(duì)視頻中的場(chǎng)景信息的分析,輸出豐富而準(zhǔn)確的概念、場(chǎng)景標(biāo)簽 人物識(shí)別 基于對(duì)視頻中的人物信息的分析,輸出準(zhǔn)確的人物標(biāo)簽 視頻 OCR 識(shí)別視頻中出現(xiàn)的來自:百科
基于對(duì)視頻的前后幀信息、光流運(yùn)動(dòng)信息分析、場(chǎng)景內(nèi)容信息識(shí)別等分析,檢測(cè)和識(shí)別視頻動(dòng)作 優(yōu)勢(shì) 多模態(tài)識(shí)別 綜合圖像、光流、聲音等信息,識(shí)別動(dòng)作更準(zhǔn)確 識(shí)別準(zhǔn)確 采用3D卷積神經(jīng)網(wǎng)絡(luò)算法,動(dòng)作識(shí)別準(zhǔn)確度高 對(duì)復(fù)雜場(chǎng)景魯棒性強(qiáng) 對(duì)不同天氣條件、不同的攝像頭角度等復(fù)雜場(chǎng)景的視頻動(dòng)作識(shí)別具有良好的魯棒性 建議搭配使用:來自:百科
藝賽旗機(jī)器人流程自動(dòng)化軟件 IS-RPA AI開發(fā)平臺(tái) ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。來自:云商店
能小站,讓邊緣設(shè)備具備處理一定數(shù)據(jù)的能力,可應(yīng)用于以下場(chǎng)景。 人臉識(shí)別閘機(jī) 基于人臉識(shí)別技術(shù),實(shí)現(xiàn)園區(qū)進(jìn)出門進(jìn)行人臉識(shí)別,可實(shí)現(xiàn)刷臉進(jìn)門、智慧打卡等。 車牌/車型識(shí)別 在園區(qū)、車庫(kù)等進(jìn)出口,對(duì)車輛進(jìn)行車牌、車型識(shí)別,可實(shí)現(xiàn)特定車牌和車型的權(quán)限認(rèn)證。 安全帽檢測(cè) 從視頻監(jiān)控中發(fā)現(xiàn)未來自:百科
查看聲音 聲音模型制作耗時(shí),如下所示: 基礎(chǔ)版:約1~3個(gè)工作日。 進(jìn)階版:約1~3個(gè)工作日。 高品質(zhì):約5個(gè)工作日。 自定義聲音應(yīng)用方式,如下所示: 自定義聲音生成后,會(huì)自動(dòng)展示在 MetaStudio 控制臺(tái)聲音列表中,可用于分身數(shù)字人視頻制作、 視頻直播 或智能交互等場(chǎng)景中。 通過來自:專題
對(duì)于用戶上傳二進(jìn)制數(shù)據(jù),系統(tǒng)經(jīng)過處理,生成語音對(duì)應(yīng)的文字,支持熱詞定制。 核心能力:基于深度學(xué)習(xí)技術(shù),對(duì)特定領(lǐng)域場(chǎng)景和語料進(jìn)行優(yōu)化,語音識(shí)別率達(dá)到業(yè)界領(lǐng)先;使用工業(yè)界成熟的算法,結(jié)合語音識(shí)別學(xué)術(shù)界最新研究成果,為企業(yè)提供獨(dú)特競(jìng)爭(zhēng)力優(yōu)勢(shì)。 基本步驟:在代碼編輯區(qū)輸入“RecognizeFlashAsr”來自:百科
- SoundNet-根據(jù)聲音識(shí)別場(chǎng)景
- SoundNet遷移學(xué)習(xí)-由聲音分類到語音情感識(shí)別
- 深度學(xué)習(xí)識(shí)別滑動(dòng)驗(yàn)證碼
- 基于華為云智能聲音識(shí)別的實(shí)踐
- 基于深度學(xué)習(xí)的油藏?cái)?shù)據(jù)分類與識(shí)別
- 華為云深度學(xué)習(xí)kaggle貓狗識(shí)別
- 基于深度學(xué)習(xí)的性別識(shí)別算法matlab仿真
- 深度學(xué)習(xí)在語音識(shí)別中的應(yīng)用
- 深度學(xué)習(xí)在語音識(shí)別中的應(yīng)用
- 深度學(xué)習(xí)在語音識(shí)別方面的應(yīng)用