- 深度學(xué)習(xí)訓(xùn)練調(diào)參 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí)訓(xùn)練調(diào)參 相關(guān)內(nèi)容
-
ModelArts訓(xùn)練之超參搜索 ModelArts訓(xùn)練之超參搜索 ModelArts訓(xùn)練中新增了超參搜索功能,自動(dòng)實(shí)現(xiàn)模型超參搜索,為您的模型匹配最優(yōu)的超參。ModelArts支持的超參搜索功能,在無(wú)需算法工程師介入的情況下,即可自動(dòng)進(jìn)行超參的調(diào)優(yōu),在速度和精度上超過(guò)人工調(diào)優(yōu)。 Mod來(lái)自:專題大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科
- 深度學(xué)習(xí)訓(xùn)練調(diào)參 更多內(nèi)容
-
從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺(jué)翻譯、刷臉支付、人臉考勤……不知不覺(jué),深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科如果切換了Notebook的規(guī)格,那么只能在Notebook進(jìn)行單機(jī)調(diào)測(cè),不能進(jìn)行分布式調(diào)測(cè),也不能提交遠(yuǎn)程訓(xùn)練任務(wù)。 當(dāng)前僅支持Pytorch和MindSpore AI框架,如果MindSpore要進(jìn)行多機(jī)分布式訓(xùn)練調(diào)試,則每臺(tái)機(jī)器上都必須有8張卡。 ModelArts提供的調(diào)測(cè)代碼中涉及到的 OBS 路徑,實(shí)際使用時(shí)請(qǐng)?zhí)鎿Q為自己的實(shí)際OBS路徑。來(lái)自:專題、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科+節(jié)點(diǎn)的擴(kuò)展能力,PB級(jí)海量存儲(chǔ)。 GaussDB數(shù)據(jù)庫(kù) 如何進(jìn)行性能調(diào)優(yōu)? 管理控制臺(tái) 幫助文檔 云數(shù)據(jù)庫(kù) GaussDB性能調(diào)優(yōu) GaussDB 總體調(diào)優(yōu)思路 GaussDB性能調(diào)優(yōu)過(guò)程需要綜合考慮多方面因素,因此,調(diào)優(yōu)人員應(yīng)對(duì)系統(tǒng)軟件架構(gòu)、軟硬件配置、數(shù)據(jù)庫(kù)配置參數(shù)、并發(fā)控制(當(dāng)前來(lái)自:專題嘗試調(diào)整超參來(lái)迭代模型;或在實(shí)驗(yàn)階段,有一個(gè)可以優(yōu)化訓(xùn)練的性能的想法,則會(huì)回到開發(fā)階段,重新優(yōu)化代碼。模型開發(fā)部分過(guò)程可見下圖。 開發(fā)階段:準(zhǔn)備并配置環(huán)境,調(diào)試代碼,使代碼能夠開始進(jìn)行深度學(xué)習(xí)訓(xùn)練,推薦在ModelArts開發(fā)環(huán)境中調(diào)試。 實(shí)驗(yàn)階段:調(diào)整數(shù)據(jù)集、調(diào)整超參等,通過(guò)多來(lái)自:專題權(quán)完成操作。 創(chuàng)建訓(xùn)練作業(yè) 1、登錄ModelArts管理控制臺(tái)。 2、在左側(cè)導(dǎo)航欄中,選擇“訓(xùn)練管理 > 訓(xùn)練作業(yè)”,進(jìn)入“訓(xùn)練作業(yè)”列表。 3、單擊“創(chuàng)建訓(xùn)練作業(yè)”,進(jìn)入“創(chuàng)建訓(xùn)練作業(yè)”頁(yè)面,在該頁(yè)面填寫訓(xùn)練作業(yè)相關(guān)參數(shù)信息。 4、選擇訓(xùn)練資源的規(guī)格。訓(xùn)練參數(shù)的可選范圍與已有算法的使用約束保持一致。來(lái)自:專題據(jù)的統(tǒng)一管理,提供數(shù)據(jù)通道、數(shù)據(jù)存儲(chǔ)、 數(shù)據(jù)管理 、數(shù)據(jù)展示等功能。人工智能平臺(tái)提供基于非結(jié)構(gòu)化數(shù)據(jù)的深度學(xué)習(xí)模型開發(fā)、訓(xùn)練、評(píng)估和發(fā)布,支持多種計(jì)算資源進(jìn)行模型開發(fā)與訓(xùn)練,以及超參調(diào)優(yōu)、模型可視化工具等功能。數(shù)據(jù)標(biāo)注平臺(tái)提供高效率的獨(dú)立的數(shù)據(jù)標(biāo)注功能,支持多類型應(yīng)用場(chǎng)景、多人標(biāo)注、來(lái)自:專題
- 機(jī)器學(xué)習(xí)調(diào)參神器--網(wǎng)格搜索
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- DL之模型調(diào)參:深度學(xué)習(xí)算法模型優(yōu)化參數(shù)之對(duì)深度學(xué)習(xí)模型的超參數(shù)采用網(wǎng)格搜索進(jìn)行模型調(diào)優(yōu)(建議收藏)
- 使用Hyperopt實(shí)現(xiàn)機(jī)器學(xué)習(xí)自動(dòng)調(diào)參
- 淺談深度學(xué)習(xí)中的混合精度訓(xùn)練
- 【人工智能】機(jī)器學(xué)習(xí)之暴力調(diào)參案例
- 機(jī)器學(xué)習(xí)--模型調(diào)參、超參數(shù)優(yōu)化、網(wǎng)絡(luò)架構(gòu)搜索
- 深度學(xué)習(xí)算法中的預(yù)訓(xùn)練(Pretraining)
- 《駕馭MXNet:深度剖析分布式深度學(xué)習(xí)訓(xùn)練的高效之道》
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型