- 基于深度學(xué)習(xí)的目標(biāo)識(shí)別 內(nèi)容精選 換一換
-
云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科
- 基于深度學(xué)習(xí)的目標(biāo)識(shí)別 相關(guān)內(nèi)容
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問(wèn)題。 目標(biāo)學(xué)員 需要來(lái)自:百科
- 基于深度學(xué)習(xí)的目標(biāo)識(shí)別 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科700,擅長(zhǎng)大規(guī)模視覺識(shí)別、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章來(lái)自:百科華為云計(jì)算 云知識(shí) 性能管理的目標(biāo)有哪些 性能管理的目標(biāo)有哪些 時(shí)間:2021-07-01 15:51:49 數(shù)據(jù)庫(kù)管理 數(shù)據(jù)庫(kù) 應(yīng)用性能管理 性能管理的目標(biāo) 1.數(shù)據(jù)庫(kù)系統(tǒng)的基本指標(biāo) 吞吐量; 響應(yīng)時(shí)間。 2.OLTP 在可接受的響應(yīng)時(shí)間基礎(chǔ)之上提供盡可能高的吞吐量。 降低單位資源消來(lái)自:百科API、交流學(xué)習(xí)和實(shí)戰(zhàn)的平臺(tái)。 【賽事背景】 華為云已經(jīng)成為全球主要云服務(wù)供應(yīng)商,在華為云上開放了2400+ API,包括計(jì)算、存儲(chǔ)、網(wǎng)絡(luò)、應(yīng)用服務(wù)、軟件開發(fā)服務(wù)、視頻、數(shù)據(jù)庫(kù)、EI智能等74+產(chǎn)品,如何利用這些豐富強(qiáng)大的API快速開發(fā)自己的應(yīng)用和服務(wù),成為大家關(guān)注的熱點(diǎn)。 本次AI 人臉識(shí)別 賽,為華為云來(lái)自:百科華為云計(jì)算 云知識(shí) 圖像識(shí)別 圖像識(shí)別 時(shí)間:2020-10-30 15:12:04 圖像識(shí)別( Image Recognition ),基于深度學(xué)習(xí)和大數(shù)據(jù),利用計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解,以識(shí)別各種不同模式的目標(biāo)和對(duì)象的技術(shù)。基于深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺內(nèi)容,提供多種物體來(lái)自:百科數(shù)據(jù)庫(kù)設(shè)計(jì)的目標(biāo)是什么 數(shù)據(jù)庫(kù)設(shè)計(jì)的目標(biāo)是什么 時(shí)間:2021-06-02 09:39:43 數(shù)據(jù)庫(kù) 數(shù)據(jù)庫(kù)設(shè)計(jì)的目標(biāo),是為用戶和各種應(yīng)用系統(tǒng)提供一個(gè)信息基礎(chǔ)設(shè)施和高效的運(yùn)行環(huán)境。 高效的運(yùn)行環(huán)境包括: 數(shù)據(jù)庫(kù)數(shù)據(jù)的存取效率; 數(shù)據(jù)庫(kù)存儲(chǔ)空間的利用率; 數(shù)據(jù)庫(kù)系統(tǒng)運(yùn)行管理的效率。 文中課程來(lái)自:百科
- 基于深度學(xué)習(xí)的小目標(biāo)檢測(cè)
- 基于深度學(xué)習(xí)的油藏?cái)?shù)據(jù)分類與識(shí)別
- 基于深度學(xué)習(xí)的性別識(shí)別算法matlab仿真
- 基于深度學(xué)習(xí)的鳥類識(shí)別系統(tǒng)matlab仿真
- 基于深度學(xué)習(xí)的海洋魚類識(shí)別算法matlab仿真
- 基于ResNet-101深度學(xué)習(xí)網(wǎng)絡(luò)的圖像目標(biāo)識(shí)別算法matlab仿真
- 基于深度學(xué)習(xí)網(wǎng)絡(luò)的鞋子種類識(shí)別matlab仿真
- 基于深度學(xué)習(xí)網(wǎng)絡(luò)的手勢(shì)識(shí)別算法matlab仿真
- 基于深度學(xué)習(xí)的目標(biāo)檢測(cè)(Deep Learning-based Object Detection)
- 【技術(shù)分享】基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法發(fā)展(一)