- 基于深度學(xué)習(xí)的多目標(biāo)跟蹤 內(nèi)容精選 換一換
-
云知識(shí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、語(yǔ)音識(shí)別、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科
- 基于深度學(xué)習(xí)的多目標(biāo)跟蹤 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科
- 基于深度學(xué)習(xí)的多目標(biāo)跟蹤 更多內(nèi)容
-
更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科對(duì)不同天氣條件、不同的攝像頭角度等復(fù)雜場(chǎng)景的視頻動(dòng)作識(shí)別具有良好的魯棒性 建議搭配使用: 對(duì)象存儲(chǔ)服務(wù) OBS 4.視頻人物分析 對(duì)媒體視頻中的公眾人物進(jìn)行分析,準(zhǔn)確識(shí)別視頻中出現(xiàn)的政治人物、影視明星等名人 優(yōu)勢(shì) 簡(jiǎn)單易用 操作簡(jiǎn)單,輸入視頻即可得到人物分析結(jié)果 準(zhǔn)確識(shí)別 基于深度學(xué)習(xí)的人臉識(shí)來(lái)自:百科相信很多小伙伴體驗(yàn)沙箱實(shí)驗(yàn)《使用ModelArts中開(kāi)發(fā)工具學(xué)習(xí)Python(初級(jí))》后,對(duì)Python變成語(yǔ)言有了一個(gè)基礎(chǔ)的認(rèn)知,掌握了Python基礎(chǔ)的語(yǔ)法和使用方式。它的魅力遠(yuǎn)不止于此,在本文中,我們一起來(lái)感受和學(xué)習(xí)Python變成語(yǔ)言的正則表達(dá)式和多線程高級(jí)用法,以及神秘的魔法方法。話不多說(shuō),進(jìn)入實(shí)驗(yàn),我們馬上體驗(yàn)!來(lái)自:百科華為云計(jì)算 云知識(shí) 基于鯤鵬的華為云混合云平臺(tái) 基于鯤鵬的華為云混合云平臺(tái) 時(shí)間:2021-05-28 10:21:45 鯤鵬 云計(jì)算 H CS 6.5.1/8.0是基于鯤鵬的華為云混合云平臺(tái)。 它支持x86和鯤鵬混合部署; 支持容器多集群模式部署; 容器管理面支持容災(zāi)高可用,數(shù)據(jù)面支持應(yīng)用多AZ部署;來(lái)自:百科代表性和吸引力的視頻封面,提取場(chǎng)景片段制作視頻摘要,將完整的新聞拆分成不同主題的新聞片段。 視頻指紋 VFP:視頻指紋( Video Fingerprinting )服務(wù)基于視頻指紋技術(shù),根據(jù)視頻內(nèi)容生成一串可唯一標(biāo)識(shí)當(dāng)前視頻的指紋字符,具有高穩(wěn)定性,有效避免視頻文件的格式轉(zhuǎn)換、編輯、來(lái)自:百科
- 多目標(biāo)跟蹤2019
- 【目標(biāo)跟蹤】基于matlab卡爾曼濾波多目標(biāo)跟蹤【含Matlab源碼 1832期】
- 基于CS模型和CV模型的多目標(biāo)協(xié)同濾波跟蹤算法matlab仿真
- ByteTrack 多目標(biāo)跟蹤 測(cè)試筆記
- CenterNet+ deepsort實(shí)現(xiàn)多目標(biāo)跟蹤
- 3天AI進(jìn)階實(shí)戰(zhàn)營(yíng)——多目標(biāo)跟蹤
- 【目標(biāo)跟蹤】基于matlab背景差分多目標(biāo)捕捉【含Matlab源碼 810期】
- 3天AI進(jìn)階實(shí)戰(zhàn)營(yíng)——多目標(biāo)跟蹤
- Multiple Object Tracking:多目標(biāo)跟蹤綜述
- 深度學(xué)習(xí)跟蹤DLT (deep learning tracker)