- 機(jī)器學(xué)習(xí)中特征選擇的方法 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來自:百科
- 機(jī)器學(xué)習(xí)中特征選擇的方法 相關(guān)內(nèi)容
-
第7章 有監(jiān)督學(xué)習(xí)-決策樹 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來自:百科華為云計(jì)算 云知識(shí) E-R方法中的聯(lián)系 E-R方法中的聯(lián)系 時(shí)間:2021-06-02 10:17:41 數(shù)據(jù)庫 大多數(shù)場合下面,數(shù)據(jù)模型里面關(guān)心的是實(shí)體之間的聯(lián)系。E-R方法中,用“聯(lián)系”描述實(shí)體內(nèi)部以及實(shí)體之間的聯(lián)系。在概念模型中一般使用菱形框表示聯(lián)系。 文中課程 更多精彩課來自:百科
- 機(jī)器學(xué)習(xí)中特征選擇的方法 更多內(nèi)容
-
數(shù)據(jù)庫開發(fā)環(huán)境 HCIA- GaussDB 系列課程。華為的GaussDB支持基于C、Java等應(yīng)用程序的開發(fā)。了解它相關(guān)的系統(tǒng)結(jié)構(gòu)和相關(guān)概念,有助于更好地去開發(fā)和使用 GaussDB數(shù)據(jù)庫 。 本課程講述了GaussDB的所有工具使用,方便用戶學(xué)習(xí)和查看。學(xué)習(xí)本課程之前,需要了解操作系統(tǒng)知識(shí),C/J來自:百科
數(shù)據(jù)庫安全 基礎(chǔ) HCIA-GaussDB系列課程。數(shù)據(jù)庫作為核心的基礎(chǔ)軟件,在我們的系統(tǒng)架構(gòu)中處于系統(tǒng)的最末端,它是查詢和存儲(chǔ)數(shù)據(jù)的系統(tǒng),是各業(yè)務(wù)數(shù)據(jù)最終落地的承載者,而當(dāng)今社會(huì)最值錢的又是擁有大量的數(shù)據(jù),因此其數(shù)據(jù)庫安全性至關(guān)重要。 立即學(xué)習(xí) 最新文章 替換VolcanoJobreplace來自:百科
手把手教你玩轉(zhuǎn) 人臉識(shí)別 ,初探深度學(xué)習(xí)。 課程簡介 本課程主要內(nèi)容包括:人臉識(shí)別原理、機(jī)器如何提取圖像的特征。 課程目標(biāo) 通過本課程學(xué)習(xí),了解機(jī)器學(xué)習(xí)的方法及快速掌握人臉識(shí)別應(yīng)用。 課程大綱 第1節(jié) 機(jī)器學(xué)習(xí)內(nèi)容回顧 第2節(jié) 機(jī)器是如何進(jìn)行圖像分類 第3節(jié) 圖像的特征提取 第4節(jié) 初探深度學(xué)習(xí) 第5節(jié) 人臉識(shí)別的原理及應(yīng)用場景來自:百科
- 基于機(jī)器學(xué)習(xí)的測井?dāng)?shù)據(jù)特征選擇和降維方法
- 機(jī)器學(xué)習(xí) - 數(shù)據(jù)預(yù)處理中的 特征離散化 方法
- 《Python大規(guī)模機(jī)器學(xué)習(xí)》—3.3 ?正則化特征選擇
- 《Python大規(guī)模機(jī)器學(xué)習(xí)》 —3.3正則化特征選擇
- 【進(jìn)階版】 機(jī)器學(xué)習(xí)之稀疏學(xué)習(xí)、特征選擇、過濾式選擇、包裹式選擇、正則化等(18)
- 機(jī)器學(xué)習(xí)在測井?dāng)?shù)據(jù)特征提取中的作用
- 機(jī)器學(xué)習(xí):數(shù)據(jù)降維特征選擇和主成分分析PCA
- 機(jī)器學(xué)習(xí)9-特征組合
- 機(jī)器學(xué)習(xí)(三)——特征工程
- 《scikit-learn機(jī)器學(xué)習(xí)常用算法原理及編程實(shí)戰(zhàn)》—1.4.3 特征選擇