- 機(jī)器學(xué)習(xí)中基尼系數(shù) 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來自:百科人工智能的技術(shù)歸根到底都建立在數(shù)學(xué)模型之上,本課程為大家介紹AI中所用到的數(shù)學(xué)基礎(chǔ)知識(shí)。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、掌握線性代數(shù)的基礎(chǔ)知識(shí)及應(yīng)用。 2、掌握概率論與數(shù)理統(tǒng)計(jì)的基礎(chǔ)知識(shí)及應(yīng)用。 3、理解信息熵與基尼系數(shù)的相關(guān)知識(shí)。 4、掌握常用的最優(yōu)化算法及應(yīng)用。 課程大綱 第1章 高等數(shù)學(xué) 第2章來自:百科
- 機(jī)器學(xué)習(xí)中基尼系數(shù) 相關(guān)內(nèi)容
-
第7章 有監(jiān)督學(xué)習(xí)-決策樹 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來自:百科使用ModelArts中開發(fā)工具學(xué)習(xí)Python(高級(jí)) 使用ModelArts中開發(fā)工具學(xué)習(xí)Python(高級(jí)) 時(shí)間:2020-12-02 10:27:51 本實(shí)驗(yàn)指導(dǎo)用戶基于Notebook來學(xué)習(xí)Python語言中的正則表達(dá)式進(jìn)行文本信息的匹配、多線程執(zhí)行任務(wù)的實(shí)現(xiàn)和Python中類的魔法方法的使用。來自:百科
- 機(jī)器學(xué)習(xí)中基尼系數(shù) 更多內(nèi)容
-
型數(shù)據(jù)庫服務(wù),支持單機(jī)和主備部署。 關(guān)系數(shù)據(jù)庫應(yīng)用-功能多 集成了數(shù)據(jù)庫運(yùn)維和監(jiān)控功能,用戶無需額外自行開發(fā),一鍵操作,可視化監(jiān)控。 關(guān)系數(shù)據(jù)庫應(yīng)用-速度快 即開即用,一鍵部署,用戶無需耗費(fèi)大量時(shí)間去買設(shè)備、裝軟件和組網(wǎng)部署數(shù)據(jù)庫。 關(guān)系數(shù)據(jù)庫應(yīng)用-質(zhì)量好 跨AZ高可用,數(shù)據(jù)自動(dòng)來自:專題
基于先進(jìn)的Transformer架構(gòu)對(duì)算法模型進(jìn)行深度優(yōu)化,機(jī)器翻譯效果和速度業(yè)界領(lǐng)先 數(shù)據(jù)支持 專業(yè)譯員團(tuán)隊(duì)支撐模型訓(xùn)練,20年積累的高質(zhì)量翻譯語料庫 穩(wěn)定可靠 基于企業(yè)級(jí)客戶實(shí)踐,經(jīng)受復(fù)雜場景考驗(yàn),華為云機(jī)器翻譯服務(wù)已在多個(gè)場景中成功應(yīng)用 獨(dú)創(chuàng)技術(shù) 通過混合網(wǎng)絡(luò)結(jié)構(gòu)、受限解碼、實(shí)時(shí)神經(jīng)翻譯等技術(shù),大幅提升翻譯質(zhì)量來自:百科
基于先進(jìn)的Transformer架構(gòu)對(duì)算法模型進(jìn)行深度優(yōu)化,機(jī)器翻譯效果和速度業(yè)界領(lǐng)先。 數(shù)據(jù)支持 專業(yè)譯員團(tuán)隊(duì)支撐模型訓(xùn)練,20年積累的高質(zhì)量翻譯語料庫。 穩(wěn)定可靠 基于企業(yè)級(jí)客戶實(shí)踐,經(jīng)受復(fù)雜場景考驗(yàn),華為云機(jī)器翻譯服務(wù)已在多個(gè)場景中成功應(yīng)用。 獨(dú)創(chuàng)技術(shù) 通過混合網(wǎng)絡(luò)結(jié)構(gòu)、受限解碼、實(shí)時(shí)神經(jīng)翻譯等技術(shù),大幅提升翻譯質(zhì)量。來自:百科
從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語音識(shí)別 、自動(dòng)機(jī)器翻譯、即時(shí)視覺翻譯、刷臉支付、人臉考勤……不知不覺,深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)角落,給生來自:百科
真實(shí)環(huán)境實(shí)操體驗(yàn),助你快速上手 云安全 操作 初探CTF三大題型(MISC+Reverse+Crypto) 該實(shí)驗(yàn)旨在讓用戶體驗(yàn)到CTF奪旗賽中MISC、Reverse、Crypto類型題目的做法和技巧 MISC操作 | Reverse操作 | Crypto操作 通過靶場平臺(tái)演練增強(qiáng)安全攻防意識(shí)來自:專題
權(quán)時(shí),“作用范圍”需要選擇“區(qū)域級(jí)項(xiàng)目”,然后在指定區(qū)域(如華北-北京1)對(duì)應(yīng)的項(xiàng)目(cn-north-1)中設(shè)置相關(guān)權(quán)限,并且該權(quán)限僅對(duì)此項(xiàng)目生效;如果在“所有項(xiàng)目”中設(shè)置權(quán)限,則該權(quán)限在所有區(qū)域項(xiàng)目中都生效。訪問 GaussDB 時(shí),需要先切換至授權(quán)區(qū)域。 GaussDB數(shù)據(jù)庫 權(quán)限策略是什么?來自:專題
-用”全生命周期管理能力,讓數(shù)據(jù)存得下、流得動(dòng)、算得快、用得好,幫助客戶將數(shù)據(jù)資源轉(zhuǎn)變?yōu)閿?shù)據(jù)資產(chǎn)。雖然各行各業(yè)都已經(jīng)公認(rèn)數(shù)據(jù)中隱藏的巨大價(jià)值,但在實(shí)現(xiàn)過程中,面臨多重挑戰(zhàn):數(shù)據(jù)準(zhǔn)備難、數(shù)據(jù)融合分析難、數(shù)據(jù)消費(fèi)難。 針對(duì)多樣性的業(yè)務(wù)、多樣性的系統(tǒng)、多樣性的數(shù)據(jù)帶來數(shù)據(jù)價(jià)值變現(xiàn)的挑戰(zhàn)來自:百科
實(shí)驗(yàn)指導(dǎo)用戶完成基于華為昇騰 彈性云服務(wù)器 的圖像分類應(yīng)用。 初級(jí) 通過鯤鵬開發(fā)套件實(shí)現(xiàn)Java代碼遷移 本實(shí)驗(yàn)指導(dǎo)用戶使用鯤鵬分析掃描工具識(shí)別java軟件中的依賴庫,并在鯤鵬平臺(tái)完成java代碼的編譯遷移。 初級(jí) 通過鯤鵬開發(fā)套件實(shí)現(xiàn)軟件包遷移 本實(shí)驗(yàn)指導(dǎo)用戶使用鯤鵬開發(fā)套件Porting Advisor將X86平臺(tái)knox來自:專題
- 使用基尼系數(shù)計(jì)算步驟和場景
- 了解CART中分類的基尼系數(shù)和回歸樹
- 機(jī)器學(xué)習(xí) - [源碼實(shí)現(xiàn)決策樹小專題]決策樹中混雜度數(shù)值度量的Python編程實(shí)現(xiàn)(信息熵和基尼系數(shù)的計(jì)算)
- 機(jī)器學(xué)習(xí)筆記——皮爾遜相關(guān)系數(shù)
- 決策樹CART和信息論簡介
- 【機(jī)器學(xué)習(xí)面試總結(jié)】————(三)
- 決策樹算法的原理是什么樣的?
- 機(jī)器學(xué)習(xí)之決策樹
- [機(jī)器學(xué)習(xí)|理論&實(shí)踐] 體育分析中的機(jī)器學(xué)習(xí)應(yīng)用
- 機(jī)器學(xué)習(xí)之隨機(jī)森林