- 機(jī)器學(xué)習(xí)訓(xùn)練集測(cè)試集 內(nèi)容精選 換一換
-
華為云計(jì)算 云知識(shí) 什么是數(shù)據(jù)集 什么是數(shù)據(jù)集 時(shí)間:2021-04-02 15:07:19 數(shù)據(jù)集,又稱(chēng)為資料集、數(shù)據(jù)集合或資料集合,是一種由數(shù)據(jù)所組成的集合。數(shù)據(jù)反映了真實(shí)世界的狀況。數(shù)據(jù)集作為深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的輸入,對(duì)AI開(kāi)發(fā)有至關(guān)重要的意義。 ModelArts 數(shù)據(jù)管理來(lái)自:百科華為云計(jì)算 云知識(shí) 超速入門(mén)AT指令集 超速入門(mén)AT指令集 時(shí)間:2022-11-08 12:00:35 華為云IoT 物聯(lián)網(wǎng)平臺(tái) 什么是AT指令集 AT命令,用來(lái)控制TE(Terminal Equipment)和MT(Mobile Terminal)之間交互的規(guī)則,如下圖所示。在來(lái)自:百科
- 機(jī)器學(xué)習(xí)訓(xùn)練集測(cè)試集 相關(guān)內(nèi)容
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類(lèi) 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科第7章 有監(jiān)督學(xué)習(xí)-決策樹(shù) 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來(lái)自:百科
- 機(jī)器學(xué)習(xí)訓(xùn)練集測(cè)試集 更多內(nèi)容
-
從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng)機(jī)器翻譯、即時(shí)視覺(jué)翻譯、刷臉支付、人臉考勤……不知不覺(jué),深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
但是可以參考如下操作方式,將兩個(gè)數(shù)據(jù)集的數(shù)據(jù)合并在一個(gè)數(shù)據(jù)集中。 例如需將數(shù)據(jù)集A和數(shù)據(jù)集B進(jìn)行合并。 1.分別將數(shù)據(jù)集A和數(shù)據(jù)集B進(jìn)行發(fā)布。 2.發(fā)布后可獲得數(shù)據(jù)集A和數(shù)據(jù)集B的Manifest文件??赏ㄟ^(guò)數(shù)據(jù)集的“數(shù)據(jù)集輸出位置”獲得此文件。 3.創(chuàng)建一個(gè)空數(shù)據(jù)集C,即無(wú)任何輸出,其輸入位置選擇一個(gè)空的 OBS 文件夾。來(lái)自:專(zhuān)題
支持?jǐn)?shù)據(jù)篩選、標(biāo)注等數(shù)據(jù)處理,提供數(shù)據(jù)集版本管理,特別是深度學(xué)習(xí)的大數(shù)據(jù)集,讓訓(xùn)練結(jié)果可重現(xiàn)。 2、極“快”致“簡(jiǎn)”模型訓(xùn)練 自研的MoXing深度學(xué)習(xí)框架,更高效更易用,大大提升訓(xùn)練速度。 3、多場(chǎng)景部署 支持模型部署到多種生產(chǎn)環(huán)境,可部署為云端在線推理和批量推理,也可以直接部署到端和邊。 4、自動(dòng)學(xué)習(xí) 支持來(lái)自:專(zhuān)題
標(biāo)注樣本集本身不計(jì)費(fèi),數(shù)據(jù)集存儲(chǔ)在OBS中,收取OBS的費(fèi)用。建議您前往OBS服務(wù),將數(shù)據(jù)集存儲(chǔ)的OBS路徑,刪除數(shù)據(jù)和OBS桶即可停止收費(fèi)。 ModelArts自動(dòng)學(xué)習(xí)所創(chuàng)建項(xiàng)目一直在扣費(fèi),如何停止計(jì)費(fèi)? 將所創(chuàng)建的自動(dòng)學(xué)習(xí)作業(yè)刪除,即可停止計(jì)費(fèi)。 解決方法:在所創(chuàng)建自動(dòng)學(xué)習(xí)作業(yè)列表中,單來(lái)自:專(zhuān)題
I領(lǐng)域的基礎(chǔ)知識(shí)、經(jīng)典數(shù)據(jù)集和經(jīng)典算法的介紹,每章課程都是實(shí)戰(zhàn)案例,配合代碼講解和精心設(shè)計(jì)的課后作業(yè),基于華為云一站式 AI開(kāi)發(fā)平臺(tái) ModelArts進(jìn)行動(dòng)手實(shí)踐,充足算力供您使用,幫助您真正掌握八大熱門(mén)AI領(lǐng)域的模型開(kāi)發(fā)能力。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、熟練使用華來(lái)自:百科
使用ModelArts中開(kāi)發(fā)工具學(xué)習(xí)Python(高級(jí)) 本實(shí)驗(yàn)指導(dǎo)用戶基于Notebook來(lái)學(xué)習(xí)Python語(yǔ)言中的正則表達(dá)式進(jìn)行文本信息的匹配、多線程執(zhí)行任務(wù)的實(shí)現(xiàn)和Python中類(lèi)的魔法方法的使用。 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCH來(lái)自:專(zhuān)題
AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò)來(lái)自:專(zhuān)題
云知識(shí) 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-KPI異常檢測(cè) 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-KPI異常檢測(cè) 時(shí)間:2021-01-05 11:40:25 華為網(wǎng)絡(luò)AI學(xué)習(xí)賽2021-KPI異常檢測(cè)提供某運(yùn)營(yíng)商的KPI真實(shí)數(shù)據(jù),參賽選手需要根據(jù)歷史40天異常標(biāo)簽數(shù)據(jù)(訓(xùn)練數(shù)據(jù)集),訓(xùn)練模型并檢測(cè)后續(xù)來(lái)自:百科
ModelArts模型訓(xùn)練 ModelArts模型訓(xùn)練簡(jiǎn)介 ModelArts模型訓(xùn)練,俗稱(chēng)“建模”,指通過(guò)分析手段、方法和技巧對(duì)準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測(cè)、評(píng)價(jià)等結(jié)果。來(lái)自:專(zhuān)題
云日志服務(wù)LTS使用流程 云日志服務(wù)平臺(tái)有哪些功能 分布式緩存服務(wù)Redis 數(shù)據(jù)緩存高并發(fā) Redis有什么作用 數(shù)據(jù)庫(kù)壓力怎么辦 自建Redis成本高怎么辦 區(qū)塊鏈服務(wù) BCS 區(qū)塊鏈入門(mén) 區(qū)塊鏈應(yīng)用場(chǎng)景 學(xué)習(xí)區(qū)塊鏈技術(shù) 區(qū)塊鏈服務(wù)是什么 漏洞掃描服務(wù)VSS 安全漏洞掃描 主機(jī)漏洞掃描來(lái)自:專(zhuān)題
測(cè)試資源準(zhǔn)備 性能測(cè)試 03:08 性能測(cè)試 響應(yīng)提取 性能測(cè)試服務(wù)精選推薦 區(qū)塊鏈服務(wù) BCS 區(qū)塊鏈入門(mén) 區(qū)塊鏈應(yīng)用場(chǎng)景 學(xué)習(xí)區(qū)塊鏈技術(shù) 區(qū)塊鏈服務(wù)是什么 云日志服務(wù) LTS 免費(fèi)云日志服務(wù) 為什么使用云日志服務(wù) 云日志服務(wù)LTS使用流程 云日志服務(wù)平臺(tái)有哪些功能 分布式緩存 DCS 數(shù)據(jù)緩存高并發(fā)來(lái)自:專(zhuān)題
- 《機(jī)器學(xué)習(xí):算法視角(原書(shū)第2版)》 —2.2.2 訓(xùn)練集、測(cè)試集和驗(yàn)證集
- 訓(xùn)練集、驗(yàn)證集、測(cè)試集的作用和意義
- 為什么訓(xùn)練集和測(cè)試集必須獨(dú)立同分布?深入解析機(jī)器學(xué)習(xí)中的“黃金法則”
- 隨機(jī)分配訓(xùn)練集,驗(yàn)證集
- pandas劃分訓(xùn)練集驗(yàn)證集
- 免費(fèi)的機(jī)器學(xué)習(xí)數(shù)據(jù)集網(wǎng)站(6300+數(shù)據(jù)集)
- 機(jī)器學(xué)習(xí)7-數(shù)據(jù)集劃分
- 為什么訓(xùn)練集和測(cè)試集必須分開(kāi)歸一化?揭秘?cái)?shù)據(jù)泄漏的隱患
- 神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)筆記(四)訓(xùn)練集
- 機(jī)器學(xué)習(xí)中的有標(biāo)注數(shù)據(jù)集和無(wú)標(biāo)注數(shù)據(jù)集