- 機(jī)器學(xué)習(xí)所用到的概率 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來自:百科第7章 有監(jiān)督學(xué)習(xí)-決策樹 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來自:百科
- 機(jī)器學(xué)習(xí)所用到的概率 相關(guān)內(nèi)容
-
來自:百科云知識(shí) 機(jī)器翻譯的優(yōu)點(diǎn) 機(jī)器翻譯的優(yōu)點(diǎn) 時(shí)間:2020-10-13 09:32:56 機(jī)器翻譯(Machine Translation)致力于為企業(yè)和個(gè)人提供不同語種間快速翻譯能力,通過API調(diào)用即可實(shí)現(xiàn)源語言文本到目標(biāo)語言文本的自動(dòng)翻譯。 產(chǎn)品優(yōu)勢 算法領(lǐng)先 基于先進(jìn)的Tran來自:百科
- 機(jī)器學(xué)習(xí)所用到的概率 更多內(nèi)容
-
Configration:使用本地化保存的部署參數(shù)(這里暫不選擇)。 Name:自定義部署任務(wù)的名稱,方便后續(xù)復(fù)用(可以隨意定義一個(gè)名稱)。 File:要傳送到E CS 的文件(可以選擇一個(gè)jar包、二進(jìn)制包等形式的文件)。 Target ECS:目標(biāo)Region的ECS資源,可以選擇想要部署的實(shí)例(確保當(dāng)前登錄賬號(hào)下有ECS資源)。來自:百科隱藏的結(jié)構(gòu)。常見的有聚類。 強(qiáng)化學(xué)習(xí):智能系統(tǒng)從環(huán)境到行為映射的學(xué)習(xí),以使獎(jiǎng)勵(lì)信號(hào)(強(qiáng)化信號(hào))函數(shù)值最大。 回歸 回歸反映的是數(shù)據(jù)屬性值在時(shí)間上的特征,產(chǎn)生一個(gè)將數(shù)據(jù)項(xiàng)映射到一個(gè)實(shí)值預(yù)測變量的函數(shù),發(fā)現(xiàn)變量或?qū)傩蚤g的依賴關(guān)系,其主要研究問題包括數(shù)據(jù)序列的趨勢特征、數(shù)據(jù)序列的預(yù)測以來自:百科RPA優(yōu)勢 專業(yè)的華為數(shù)字機(jī)器人教學(xué)管理平臺(tái),持續(xù)積累各個(gè)行業(yè)的教學(xué)案例與課程,適配高校各專業(yè)與RPA數(shù)字機(jī)器人技術(shù)的跨專業(yè)融合,進(jìn)行傳統(tǒng)專業(yè)數(shù)字化升級(jí)轉(zhuǎn)型。 專業(yè)的華為數(shù)字機(jī)器人教學(xué)管理平臺(tái),持續(xù)積累各個(gè)行業(yè)的教學(xué)案例與課程,適配高校各專業(yè)與RPA數(shù)字機(jī)器人技術(shù)的跨專業(yè)融合,進(jìn)行傳統(tǒng)專業(yè)數(shù)字化升級(jí)轉(zhuǎn)型。來自:專題云知識(shí) 基于深度學(xué)習(xí)算法的 語音識(shí)別 基于深度學(xué)習(xí)算法的語音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語音數(shù)據(jù)集THCHS30進(jìn)行語音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:百科
- 【機(jī)器學(xué)習(xí)算法專題(蓄力計(jì)劃)】三、機(jī)器學(xué)習(xí)中的概率論基礎(chǔ)精講
- 先驗(yàn)概率、后驗(yàn)概率、似然函數(shù)與機(jī)器學(xué)習(xí)中概率模型(如邏輯回歸、樸素貝葉斯)的關(guān)系理解
- Deep Learning Chapter01:機(jī)器學(xué)習(xí)中概率論
- 《機(jī)器學(xué)習(xí):算法視角(原書第2版)》 —2.3 數(shù)據(jù)與概率的轉(zhuǎn)換
- 機(jī)器學(xué)習(xí)領(lǐng)域必知必會(huì)的 12 種概率分布(附 Python 代碼實(shí)現(xiàn))
- 統(tǒng)計(jì)學(xué)基礎(chǔ)學(xué)習(xí)筆記:概率與概率分布
- AI黑科技,無人駕駛中都用到了哪些機(jī)器學(xué)習(xí)算法
- 【機(jī)器學(xué)習(xí) | 樸素貝葉斯】樸素貝葉斯算法:概率統(tǒng)計(jì)方法之王,簡單有效的數(shù)據(jù)分類利器
- 【初賽】概率與期望學(xué)習(xí)筆記
- 機(jī)器學(xué)習(xí)中的概率超能力:如何用樸素貝葉斯算法結(jié)合標(biāo)注數(shù)據(jù)做出精準(zhǔn)預(yù)測