- 機(jī)器學(xué)習(xí)數(shù)據(jù)的特征 內(nèi)容精選 換一換
-
RPA優(yōu)勢(shì) 專(zhuān)業(yè)的華為數(shù)字機(jī)器人教學(xué)管理平臺(tái),持續(xù)積累各個(gè)行業(yè)的教學(xué)案例與課程,適配高校各專(zhuān)業(yè)與RPA數(shù)字機(jī)器人技術(shù)的跨專(zhuān)業(yè)融合,進(jìn)行傳統(tǒng)專(zhuān)業(yè)數(shù)字化升級(jí)轉(zhuǎn)型。 專(zhuān)業(yè)的華為數(shù)字機(jī)器人教學(xué)管理平臺(tái),持續(xù)積累各個(gè)行業(yè)的教學(xué)案例與課程,適配高校各專(zhuān)業(yè)與RPA數(shù)字機(jī)器人技術(shù)的跨專(zhuān)業(yè)融合,進(jìn)行傳統(tǒng)專(zhuān)業(yè)數(shù)字化升級(jí)轉(zhuǎn)型。來(lái)自:專(zhuān)題的深度學(xué)習(xí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級(jí)神經(jīng)網(wǎng)絡(luò) 第4章來(lái)自:百科
- 機(jī)器學(xué)習(xí)數(shù)據(jù)的特征 相關(guān)內(nèi)容
-
云知識(shí) 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科高性能動(dòng)態(tài)脫敏 敏感數(shù)據(jù)實(shí)時(shí)保護(hù),不影響數(shù)據(jù)庫(kù)和應(yīng)用。 多種合規(guī) 整合業(yè)界通用的SQL注入特征庫(kù),疊加機(jī)器學(xué)習(xí)模型+評(píng)分機(jī)制,誤報(bào)率遠(yuǎn)低于平均水平。 內(nèi)置合規(guī)知識(shí)庫(kù),滿足法律法規(guī)遵從。 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,來(lái)自:百科
- 機(jī)器學(xué)習(xí)數(shù)據(jù)的特征 更多內(nèi)容
-
專(zhuān)業(yè)和最佳實(shí)踐:內(nèi)嵌研發(fā)最佳工程實(shí)踐、專(zhuān)業(yè)的敏捷項(xiàng)目管理和迭代規(guī)劃、豐富的代碼檢查規(guī)范、質(zhì)量門(mén)禁控制的流水線,幫助企業(yè)縮短達(dá)成高質(zhì)量高效率研發(fā)的時(shí)間。 高可靠、高安全:多方位系統(tǒng)安全加固、核心研發(fā)數(shù)據(jù)加密傳輸和存儲(chǔ)、雙AZ容災(zāi)、SFS Tubor自動(dòng)數(shù)據(jù)備份、基于角色的企業(yè)級(jí)安全管控,全面保障企業(yè)研發(fā)數(shù)據(jù)的安全。 怎么搭建 云計(jì)算平臺(tái)來(lái)自:專(zhuān)題化轉(zhuǎn)型對(duì)地產(chǎn)行業(yè)的價(jià)值都越來(lái)越突出。這其中,視覺(jué)智能是地產(chǎn)行業(yè)智能升級(jí)的落腳點(diǎn)。 華為機(jī)器視覺(jué)通過(guò)多年的技術(shù)積累與深刻的行業(yè)洞察,結(jié)合智慧地產(chǎn)園區(qū)建設(shè)的實(shí)踐經(jīng)驗(yàn),提出地產(chǎn)視覺(jué)智能體的解決方案,利用5G、AI和機(jī)器視覺(jué)三種技術(shù)相互促進(jìn)、相互激發(fā),打造端邊云網(wǎng)協(xié)同的一體化智能系統(tǒng),加來(lái)自:云商店變更后的實(shí)例規(guī)格的價(jià)格計(jì)費(fèi)。 擴(kuò)容存儲(chǔ)空間:您可以根據(jù)業(yè)務(wù)需求增加您的存儲(chǔ)空間,擴(kuò)容后即刻按照新的存儲(chǔ)空間計(jì)費(fèi)。您需要注意的是存儲(chǔ)空間只允許擴(kuò)容,不能縮容。擴(kuò)容磁盤(pán)的大小必須是(40*分片數(shù)量)的整數(shù)倍。 續(xù)費(fèi) 目前 GaussDB 提供“按需計(jì)費(fèi)”和“包年/包月”計(jì)費(fèi)方式的購(gòu)買(mǎi)方式來(lái)自:專(zhuān)題規(guī)模增大,數(shù)據(jù)庫(kù)存儲(chǔ)的數(shù)據(jù)量和承載的業(yè)務(wù)壓力也不斷增加。數(shù)據(jù)庫(kù)的架構(gòu)也必須隨之變化。 如上的架構(gòu)分類(lèi)方法,是一種按照主機(jī)數(shù)量來(lái)區(qū)分的分類(lèi)方式,分別是單機(jī)架構(gòu)和多機(jī)架構(gòu)。單機(jī)架構(gòu)分為單主機(jī)和獨(dú)立主機(jī),多機(jī)架構(gòu)分為分組和分片。 為了避免應(yīng)用服務(wù)和數(shù)據(jù)庫(kù)服務(wù)對(duì)資源的競(jìng)爭(zhēng),單機(jī)架構(gòu)也從早來(lái)自:百科通過(guò)本課程的學(xué)習(xí)使學(xué)員掌握深度學(xué)習(xí)平臺(tái)應(yīng)用及入門(mén)深度學(xué)習(xí)。 課程大綱 第1節(jié) 導(dǎo)讀&往期內(nèi)容回顧 第2節(jié) 深度學(xué)習(xí)平臺(tái)介紹 第3節(jié) 深度學(xué)習(xí)入門(mén)示例介紹 第4節(jié) 神經(jīng)網(wǎng)絡(luò)構(gòu)建多分類(lèi)模型 第5節(jié) 華為云深度學(xué)習(xí)平臺(tái)實(shí)操演練 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)來(lái)自:百科翻譯中心:采用機(jī)器翻譯服務(wù),構(gòu)建滿足特定需求的機(jī)器翻譯系統(tǒng),高效準(zhǔn)確的翻譯郵件、論文、新聞等內(nèi)容 優(yōu)勢(shì) 翻譯質(zhì)量領(lǐng)先 引擎的翻譯效果,跟專(zhuān)業(yè)的譯員團(tuán)隊(duì)一起進(jìn)行打磨,機(jī)器翻譯效果質(zhì)量高 多領(lǐng)域支持 支持多個(gè)領(lǐng)域,如新聞、信息、通信等領(lǐng)域的機(jī)器翻譯 即時(shí)通訊:集成機(jī)器翻譯服務(wù)的即時(shí)通訊軟件,可以使不同語(yǔ)種用戶之間的交流更加便捷,提升用戶體驗(yàn)來(lái)自:百科隱藏的結(jié)構(gòu)。常見(jiàn)的有聚類(lèi)。 強(qiáng)化學(xué)習(xí):智能系統(tǒng)從環(huán)境到行為映射的學(xué)習(xí),以使獎(jiǎng)勵(lì)信號(hào)(強(qiáng)化信號(hào))函數(shù)值最大。 回歸 回歸反映的是數(shù)據(jù)屬性值在時(shí)間上的特征,產(chǎn)生一個(gè)將數(shù)據(jù)項(xiàng)映射到一個(gè)實(shí)值預(yù)測(cè)變量的函數(shù),發(fā)現(xiàn)變量或?qū)傩蚤g的依賴關(guān)系,其主要研究問(wèn)題包括數(shù)據(jù)序列的趨勢(shì)特征、數(shù)據(jù)序列的預(yù)測(cè)以來(lái)自:百科華為機(jī)器視覺(jué)云服務(wù)總經(jīng)理錢(qián)森水介紹,機(jī)器視覺(jué)是5G時(shí)代行業(yè)數(shù)字化的感知入口和數(shù)據(jù)載體。華為機(jī)器視覺(jué)通過(guò)專(zhuān)業(yè)的AI芯片、開(kāi)放的OS和豐富的生態(tài)拓展了安防業(yè)務(wù)的深度和寬度,進(jìn)入千行百業(yè),與場(chǎng)景化業(yè)務(wù)融合,實(shí)現(xiàn)全息感知,成為行業(yè)數(shù)字化的抓手。 華為機(jī)器視覺(jué)充分考慮了環(huán)境對(duì)電力業(yè)務(wù)部署的影響,并提出了針對(duì)性的優(yōu)化方案來(lái)自:云商店。 數(shù)據(jù)庫(kù)系統(tǒng)的發(fā)展有以下三個(gè)特點(diǎn): 1、數(shù)據(jù)庫(kù)的發(fā)展集中在數(shù)據(jù)模型的發(fā)展上,數(shù)據(jù)模型是數(shù)據(jù)庫(kù)系統(tǒng)的核心和基礎(chǔ),所以數(shù)據(jù)庫(kù)系統(tǒng)的發(fā)展和數(shù)據(jù)模型的發(fā)展密不可分。數(shù)據(jù)庫(kù)模型的劃分維度是數(shù)據(jù)庫(kù)系統(tǒng)劃分的一個(gè)重要標(biāo)準(zhǔn)。 2、與其他計(jì)算機(jī)技術(shù)的交叉結(jié)合,計(jì)算機(jī)新技術(shù)層出不窮,數(shù)據(jù)庫(kù)和其他計(jì)來(lái)自:百科用戶智能開(kāi)啟和推薦適合的規(guī)則,提升防護(hù)效率。 WAF 面臨的挑戰(zhàn) WAF當(dāng)前需要應(yīng)對(duì)一個(gè)挑戰(zhàn)就是入侵檢測(cè)識(shí)別率的問(wèn)題,這個(gè)指標(biāo)不同的廠商都有不同的計(jì)算方式,并不是一個(gè)容易衡量的指標(biāo)。因?yàn)閺墓粽?span style='color:#C7000B'>的角度,攻擊是具有相當(dāng)的隱蔽性的,對(duì)于網(wǎng)頁(yè)掛馬、新型病毒的植入, Web應(yīng)用防火墻 容易漏報(bào)來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類(lèi)型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 機(jī)器學(xué)習(xí)--數(shù)據(jù)清理、數(shù)據(jù)變換、特征工程
- 機(jī)器學(xué)習(xí) - 數(shù)據(jù)預(yù)處理中的 特征離散化 方法
- 機(jī)器學(xué)習(xí):數(shù)據(jù)特征預(yù)處理缺失值處理
- 機(jī)器學(xué)習(xí)在測(cè)井?dāng)?shù)據(jù)特征提取中的作用
- 機(jī)器學(xué)習(xí)9-特征組合
- 機(jī)器學(xué)習(xí)(三)——特征工程
- 基于機(jī)器學(xué)習(xí)的測(cè)井?dāng)?shù)據(jù)特征選擇和降維方法
- 基于機(jī)器學(xué)習(xí)的油藏歷史數(shù)據(jù)特征提取
- 《Python大規(guī)模機(jī)器學(xué)習(xí)》— 2.4 ?數(shù)據(jù)流的特征管理
- 《Python大規(guī)模機(jī)器學(xué)習(xí)》 —2.4數(shù)據(jù)流的特征管理