- 機(jī)器學(xué)習(xí)防止過擬合方法 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來自:百科第7章 有監(jiān)督學(xué)習(xí)-決策樹 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來自:百科
- 機(jī)器學(xué)習(xí)防止過擬合方法 相關(guān)內(nèi)容
-
術(shù),包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn); 3. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法原理創(chuàng)新; 4. 面向鯤鵬的算法親和優(yōu)化實(shí)踐; 5. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法實(shí)踐。 聽眾收益:來自:百科
- 機(jī)器學(xué)習(xí)防止過擬合方法 更多內(nèi)容
-
????????華為云學(xué)院 數(shù)據(jù)庫設(shè)計(jì)基礎(chǔ) HCIA- GaussDB 系列課程。本課程主要介紹數(shù)據(jù)庫設(shè)計(jì)的方法基礎(chǔ)及相關(guān)概念。???????????????????? 立即學(xué)習(xí) 最新文章 替換VolcanoJobreplaceBatchVolcanoShV1alpha1NamespacedJob來自:百科
云知識 數(shù)據(jù)治理 實(shí)施方法 數(shù)據(jù)治理實(shí)施方法 時(shí)間:2020-09-09 11:01:02 數(shù)據(jù)治理實(shí)施方法論按照數(shù)據(jù)治理成熟度評估->評估現(xiàn)狀、確定目標(biāo)、分析差距->計(jì)劃制定、計(jì)劃執(zhí)行->持續(xù)監(jiān)測度量演進(jìn)的關(guān)鍵實(shí)施方法形成數(shù)據(jù)治理實(shí)施閉環(huán)流程。 圖1數(shù)據(jù)治理實(shí)施方法論 這也遵循了PD來自:百科
從MindSpore手寫數(shù)字識別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫數(shù)字識別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語音識別 、自動(dòng)機(jī)器翻譯、即時(shí)視覺翻譯、刷臉支付、人臉考勤……不知不覺,深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來自:百科
和使用 GaussDB數(shù)據(jù)庫 。 本課程講述了GaussDB的所有工具使用,方便用戶學(xué)習(xí)和查看。學(xué)習(xí)本課程之前,需要了解操作系統(tǒng)知識,C/Java語言,熟悉C/Java的一種IDE與SQL語法。 立即學(xué)習(xí) 最新文章 替換VolcanoJobreplaceBatchVolcanoShV來自:百科
- 大模型開發(fā)基本概念
- 在ModelArts訓(xùn)練得到的模型欠擬合怎么辦?
- 如何調(diào)整訓(xùn)練參數(shù),使盤古大模型效果最優(yōu)
- 創(chuàng)建盤古行業(yè)NLP大模型訓(xùn)練任務(wù)
- 優(yōu)化訓(xùn)練超參數(shù)
- 構(gòu)建微調(diào)訓(xùn)練任務(wù)
- 調(diào)優(yōu)典型問題
- 為什么微調(diào)后的盤古大模型只能回答訓(xùn)練樣本中的問題
- 為什么微調(diào)后的盤古大模型總是重復(fù)相同的回答
- 數(shù)據(jù)量和質(zhì)量均滿足要求,為什么盤古大模型微調(diào)效果不好