- 機(jī)器學(xué)習(xí)訓(xùn)練過擬合 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來自:百科第7章 有監(jiān)督學(xué)習(xí)-決策樹 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來自:百科
- 機(jī)器學(xué)習(xí)訓(xùn)練過擬合 相關(guān)內(nèi)容
-
術(shù),包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn); 3. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法原理創(chuàng)新; 4. 面向鯤鵬的算法親和優(yōu)化實(shí)踐; 5. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法實(shí)踐。 聽眾收益:來自:百科想選擇。 機(jī)器學(xué)習(xí):機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計算資源,其中訓(xùn)練過程需要處理海量的數(shù)據(jù),推理過程則希望極低的時延。同時機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中, FPGA以其高并行計算、硬件可編程、低功耗、和低時延等優(yōu)勢,可針對不同算法動態(tài)編程設(shè)計最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中海量計算和來自:百科
- 機(jī)器學(xué)習(xí)訓(xùn)練過擬合 更多內(nèi)容
-
從MindSpore手寫數(shù)字識別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫數(shù)字識別學(xué)習(xí)深度學(xué)習(xí) 時間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語音識別 、自動機(jī)器翻譯、即時視覺翻譯、刷臉支付、人臉考勤……不知不覺,深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個來自:百科
- 欠擬合和過擬合——機(jī)器學(xué)習(xí)【百變AI秀】
- 深入python機(jī)器學(xué)習(xí)中的過擬合與欠擬合
- 機(jī)器學(xué)習(xí):過擬合與欠擬合是如何被解決的?
- 機(jī)器學(xué)習(xí)6-泛化與過擬合
- 機(jī)器學(xué)習(xí)--模型評估、過擬合和欠擬合、模型驗(yàn)證
- 深度學(xué)習(xí)擬合,欠擬合筆記
- 【機(jī)器貓說機(jī)器學(xué)習(xí)】如何避免機(jī)器學(xué)習(xí)中的過擬合-FISTA
- 機(jī)器學(xué)習(xí)模型的過擬合問題常見解決
- 神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程、常見的訓(xùn)練算法、如何避免過擬合
- 過擬合和欠擬合:機(jī)器學(xué)習(xí)模型中的兩個重要概念
- 創(chuàng)建盤古行業(yè)NLP大模型訓(xùn)練任務(wù)
- 構(gòu)建微調(diào)訓(xùn)練任務(wù)
- 創(chuàng)建視頻生成大模型訓(xùn)練任務(wù)
- 創(chuàng)建NLP大模型訓(xùn)練任務(wù)
- 構(gòu)建模型蒸餾訓(xùn)練任務(wù)
- 如何調(diào)整訓(xùn)練參數(shù),使盤古大模型效果最優(yōu)
- 優(yōu)化訓(xùn)練超參數(shù)
- 構(gòu)建增量預(yù)訓(xùn)練任務(wù)
- 數(shù)據(jù)量和質(zhì)量均滿足要求,為什么盤古大模型微調(diào)效果不好
- 大模型開發(fā)基本概念