- 機(jī)器學(xué)習(xí)訓(xùn)練過(guò)擬合 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科第7章 有監(jiān)督學(xué)習(xí)-決策樹(shù) 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來(lái)自:百科
- 機(jī)器學(xué)習(xí)訓(xùn)練過(guò)擬合 相關(guān)內(nèi)容
-
術(shù),包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級(jí)提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn); 3. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法原理創(chuàng)新; 4. 面向鯤鵬的算法親和優(yōu)化實(shí)踐; 5. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法實(shí)踐。 聽(tīng)眾收益:來(lái)自:百科想選擇。 機(jī)器學(xué)習(xí):機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中訓(xùn)練過(guò)程需要處理海量的數(shù)據(jù),推理過(guò)程則希望極低的時(shí)延。同時(shí)機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中, FPGA以其高并行計(jì)算、硬件可編程、低功耗、和低時(shí)延等優(yōu)勢(shì),可針對(duì)不同算法動(dòng)態(tài)編程設(shè)計(jì)最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中海量計(jì)算和來(lái)自:百科
- 機(jī)器學(xué)習(xí)訓(xùn)練過(guò)擬合 更多內(nèi)容
-
WTP數(shù)字倉(cāng)庫(kù)實(shí)訓(xùn)平臺(tái),企業(yè)員工可以學(xué)習(xí)和掌握智慧物流數(shù)字化實(shí)踐技能。這些技能包括數(shù)字化倉(cāng)庫(kù)管理、智能物流系統(tǒng)操作等,有助于提高企業(yè)的物流效率和管理水平。3. 服務(wù)于智慧物流實(shí)訓(xùn)課程:Arpa WTP數(shù)字倉(cāng)庫(kù)實(shí)訓(xùn)平臺(tái)可以作為《倉(cāng)儲(chǔ)管理》等智慧物流實(shí)訓(xùn)課程的輔助工具。通過(guò)平臺(tái)的實(shí)訓(xùn)內(nèi)容,學(xué)來(lái)自:專題
WTP數(shù)字倉(cāng)庫(kù)實(shí)訓(xùn)平臺(tái),企業(yè)員工可以學(xué)習(xí)和掌握智慧物流數(shù)字化實(shí)踐技能。這些技能包括數(shù)字化倉(cāng)庫(kù)管理、智能物流系統(tǒng)操作等,有助于提高企業(yè)的物流效率和管理水平。3. 服務(wù)于智慧物流實(shí)訓(xùn)課程:Arpa WTP數(shù)字倉(cāng)庫(kù)實(shí)訓(xùn)平臺(tái)可以作為《倉(cāng)儲(chǔ)管理》等智慧物流實(shí)訓(xùn)課程的輔助工具。通過(guò)平臺(tái)的實(shí)訓(xùn)內(nèi)容,學(xué)來(lái)自:專題
想選擇。 機(jī)器學(xué)習(xí):機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中訓(xùn)練過(guò)程需要處理海量的數(shù)據(jù),推理過(guò)程則希望極低的時(shí)延。同時(shí)機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中, FPGA以其高并行計(jì)算、硬件可編程、低功耗、和低時(shí)延等優(yōu)勢(shì),可針對(duì)不同算法動(dòng)態(tài)編程設(shè)計(jì)最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中海量計(jì)算和來(lái)自:百科
別、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科
理想選擇。 機(jī)器學(xué)習(xí):機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中訓(xùn)練過(guò)程需要處理海量的數(shù)據(jù),推理過(guò)程則希望極低的時(shí)延。同時(shí)機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中,F(xiàn)PGA以其高并行計(jì)算、硬件可編程、低功耗、和低時(shí)延等優(yōu)勢(shì),可針對(duì)不同算法動(dòng)態(tài)編程設(shè)計(jì)最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中海量計(jì)算和來(lái)自:百科
從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng)機(jī)器翻譯、即時(shí)視覺(jué)翻譯、刷臉支付、人臉考勤……不知不覺(jué),深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
- 欠擬合和過(guò)擬合——機(jī)器學(xué)習(xí)【百變AI秀】
- 深入python機(jī)器學(xué)習(xí)中的過(guò)擬合與欠擬合
- 機(jī)器學(xué)習(xí):過(guò)擬合與欠擬合是如何被解決的?
- 機(jī)器學(xué)習(xí)6-泛化與過(guò)擬合
- 機(jī)器學(xué)習(xí)--模型評(píng)估、過(guò)擬合和欠擬合、模型驗(yàn)證
- 深度學(xué)習(xí)擬合,欠擬合筆記
- 【機(jī)器貓說(shuō)機(jī)器學(xué)習(xí)】如何避免機(jī)器學(xué)習(xí)中的過(guò)擬合-FISTA
- 機(jī)器學(xué)習(xí)模型的過(guò)擬合問(wèn)題常見(jiàn)解決
- 神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過(guò)程、常見(jiàn)的訓(xùn)練算法、如何避免過(guò)擬合
- 過(guò)擬合和欠擬合:機(jī)器學(xué)習(xí)模型中的兩個(gè)重要概念
- 創(chuàng)建盤古行業(yè)NLP大模型訓(xùn)練任務(wù)
- 構(gòu)建微調(diào)訓(xùn)練任務(wù)
- 創(chuàng)建視頻生成大模型訓(xùn)練任務(wù)
- 創(chuàng)建NLP大模型訓(xùn)練任務(wù)
- 構(gòu)建模型蒸餾訓(xùn)練任務(wù)
- 如何調(diào)整訓(xùn)練參數(shù),使盤古大模型效果最優(yōu)
- 優(yōu)化訓(xùn)練超參數(shù)
- 構(gòu)建增量預(yù)訓(xùn)練任務(wù)
- 數(shù)據(jù)量和質(zhì)量均滿足要求,為什么盤古大模型微調(diào)效果不好
- 大模型開(kāi)發(fā)基本概念