- 機(jī)器學(xué)習(xí)常用數(shù)據(jù)集 內(nèi)容精選 換一換
-
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科第7章 有監(jiān)督學(xué)習(xí)-決策樹 第8章 有監(jiān)督學(xué)習(xí)-集成算法概述 第9章 有監(jiān)督學(xué)習(xí)-Bagging 第10章 有監(jiān)督學(xué)習(xí)-隨機(jī)森林 第11章 有監(jiān)督學(xué)習(xí)-Boosting 第12章 有監(jiān)督學(xué)習(xí)-Adaboost 第13章 有監(jiān)督學(xué)習(xí)-GBDT 第14章 有監(jiān)督學(xué)習(xí)-Xgboost 第15章來(lái)自:百科
- 機(jī)器學(xué)習(xí)常用數(shù)據(jù)集 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 什么是數(shù)據(jù)集 什么是數(shù)據(jù)集 時(shí)間:2021-04-02 15:07:19 數(shù)據(jù)集,又稱為資料集、數(shù)據(jù)集合或資料集合,是一種由數(shù)據(jù)所組成的集合。數(shù)據(jù)反映了真實(shí)世界的狀況。數(shù)據(jù)集作為深度學(xué)習(xí)和機(jī)器學(xué)習(xí)的輸入,對(duì)AI開發(fā)有至關(guān)重要的意義。 ModelArts 數(shù)據(jù)管理來(lái)自:百科支持多種自動(dòng)學(xué)習(xí)能力,通過“自動(dòng)學(xué)習(xí)”訓(xùn)練模型,用戶不需編寫代碼即可完成自動(dòng)建模、一鍵部署。 AI市場(chǎng) 預(yù)置常用算法和常用數(shù)據(jù)集,支持模型在企業(yè)內(nèi)部共享或者公開共享。 AI開發(fā)平臺(tái) ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)來(lái)自:百科
- 機(jī)器學(xué)習(xí)常用數(shù)據(jù)集 更多內(nèi)容
-
術(shù),包括優(yōu)化的機(jī)器學(xué)習(xí)算法,從而實(shí)現(xiàn)Spark性能倍級(jí)提升。 內(nèi)容大綱: 1. 大數(shù)據(jù)機(jī)器學(xué)習(xí)算法發(fā)展歷程; 2. 機(jī)器學(xué)習(xí)算法優(yōu)化的技術(shù)挑戰(zhàn); 3. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法原理創(chuàng)新; 4. 面向鯤鵬的算法親和優(yōu)化實(shí)踐; 5. 鯤鵬BoostKit機(jī)器學(xué)習(xí)算法實(shí)踐。 聽眾收益:來(lái)自:百科
用戶自定義函數(shù) 查看詳情 配置GUC參數(shù) 查看詳情 系統(tǒng)表和系統(tǒng)視圖 查看詳情 GaussDB (DWS)最佳實(shí)踐 表設(shè)計(jì)優(yōu)秀實(shí)踐 學(xué)習(xí)如何優(yōu)化表的設(shè)計(jì)。 數(shù)據(jù)導(dǎo)入優(yōu)秀實(shí)踐 學(xué)習(xí)如何向DWS導(dǎo)入數(shù)據(jù)。 SQL查詢優(yōu)秀實(shí)踐 通過一定的規(guī)則調(diào)整SQL語(yǔ)句,在保證結(jié)果正確的基礎(chǔ)上,能夠提高SQL執(zhí)行效率。來(lái)自:專題
華為云計(jì)算 云知識(shí) 使用ROMA Connect實(shí)現(xiàn)應(yīng)用與數(shù)據(jù)集成 使用ROMA Connect實(shí)現(xiàn)應(yīng)用與數(shù)據(jù)集成 時(shí)間:2020-12-01 14:55:02 實(shí)驗(yàn)指導(dǎo)用戶短時(shí)間內(nèi)熟悉并利用云服務(wù)快速實(shí)現(xiàn)應(yīng)用與數(shù)據(jù)的集成。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 ① 熟悉華為云VPC/E CS /RD來(lái)自:百科
使用ModelArts中開發(fā)工具學(xué)習(xí)Python(高級(jí)) 本實(shí)驗(yàn)指導(dǎo)用戶基于Notebook來(lái)學(xué)習(xí)Python語(yǔ)言中的正則表達(dá)式進(jìn)行文本信息的匹配、多線程執(zhí)行任務(wù)的實(shí)現(xiàn)和Python中類的魔法方法的使用。 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCH來(lái)自:專題
OBS 來(lái)查詢這些數(shù)據(jù),而不會(huì)影響 MRS 任務(wù)。 查詢服務(wù)、 數(shù)據(jù)倉(cāng)庫(kù) 和復(fù)雜的數(shù)據(jù)處理框架都各得其所,分別用于不同的領(lǐng)域。您只需要為任務(wù)挑選適當(dāng)?shù)墓ぞ呒纯伞?對(duì)象存儲(chǔ)服務(wù) OBS 對(duì)象存儲(chǔ)服務(wù)(Object Storage Service)是一款穩(wěn)定、安全、高效、易用的云存儲(chǔ)服務(wù),具備標(biāo)準(zhǔn)Restful A來(lái)自:百科
和使用 GaussDB數(shù)據(jù)庫(kù) 。 本課程講述了GaussDB的所有工具使用,方便用戶學(xué)習(xí)和查看。學(xué)習(xí)本課程之前,需要了解操作系統(tǒng)知識(shí),C/Java語(yǔ)言,熟悉C/Java的一種IDE與SQL語(yǔ)法。 立即學(xué)習(xí) 最新文章 替換VolcanoJobreplaceBatchVolcanoShV來(lái)自:百科
- 【機(jī)器學(xué)習(xí)基礎(chǔ)】常用機(jī)器學(xué)習(xí)模型
- 機(jī)器學(xué)習(xí)7-數(shù)據(jù)集劃分
- 《scikit-learn機(jī)器學(xué)習(xí)常用算法原理及編程實(shí)戰(zhàn)》—3.3.2 交叉驗(yàn)證數(shù)據(jù)集
- 免費(fèi)的機(jī)器學(xué)習(xí)數(shù)據(jù)集網(wǎng)站(6300+數(shù)據(jù)集)
- 機(jī)器學(xué)習(xí)簡(jiǎn)介及常用算法
- Dataset:數(shù)據(jù)集集合(綜合性)——機(jī)器學(xué)習(xí)、深度學(xué)習(xí)算法中常用數(shù)據(jù)集大集合(建議收藏,持續(xù)更新)
- Machine Learning | (2) sklearn數(shù)據(jù)集與機(jī)器學(xué)習(xí)組成
- 機(jī)器學(xué)習(xí)中的有標(biāo)注數(shù)據(jù)集和無(wú)標(biāo)注數(shù)據(jù)集
- 機(jī)器學(xué)習(xí)(04)——常用專業(yè)術(shù)語(yǔ)2
- 機(jī)器學(xué)習(xí)(04)——常用專業(yè)術(shù)語(yǔ)1