- tensorflow源碼 內(nèi)容精選 換一換
-
模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測(cè)、評(píng)價(jià)等結(jié)果。 業(yè)界主流的AI引擎有TensorFlow、Spark_MLlib、MXNet、Caffe、PyTorch、XGBoost-Sklearn等,大量的開發(fā)者基于主流AI引擎,開發(fā)并訓(xùn)練其業(yè)務(wù)所需的模型。 4.評(píng)估模型 訓(xùn)練得到模型之后來自:百科功能,均可以通過web界面由用戶自助進(jìn)行操作。 支持VPC 支持通過VPC內(nèi)的私有網(wǎng)絡(luò),與E CS 之間內(nèi)網(wǎng)互通; 易用性 支持TensorFlow、Caffe等流行框架 支持k8s/Swarm,使用戶能夠非常簡(jiǎn)便的搭建、管理計(jì)算集群。 未來支持主流框架鏡像、集群自動(dòng)化發(fā)放 存儲(chǔ) 支來自:百科
- tensorflow源碼 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 網(wǎng)絡(luò)智能體NAIE應(yīng)用場(chǎng)景 網(wǎng)絡(luò)智能體NAIE應(yīng)用場(chǎng)景 時(shí)間:2020-09-15 14:41:32 網(wǎng)絡(luò)智能體(Network AI Engine,NAIE)將AI引入網(wǎng)絡(luò)領(lǐng)域,解決網(wǎng)絡(luò)業(yè)務(wù)預(yù)測(cè)類、重復(fù)性、復(fù)雜類等問題,提升網(wǎng)絡(luò)資源利用率、運(yùn)維效率、能源效率和業(yè)務(wù)體驗(yàn),使能實(shí)現(xiàn)自動(dòng)駕駛網(wǎng)絡(luò)來自:百科立即使用 幫助文檔 代碼檢查指南 代碼檢查API參考 代碼檢查指南 代碼檢查準(zhǔn)備工作 代碼檢查準(zhǔn)備工作:進(jìn)入代碼檢查頁面>創(chuàng)建項(xiàng)目>創(chuàng)建代碼倉庫(針對(duì)Repo源碼源)>創(chuàng)建服務(wù)擴(kuò)展點(diǎn)(針對(duì)通用Git、GitHub和碼云三種代碼源) 代碼檢查任務(wù)創(chuàng)建 包括:創(chuàng)建Repo源碼源檢查任務(wù)、創(chuàng)來自:專題
- tensorflow源碼 更多內(nèi)容
-
行環(huán)境初始化以及代碼加載等一系列操作,這一過程引發(fā)的時(shí)延通常可達(dá)請(qǐng)求實(shí)際執(zhí)行時(shí)間的數(shù)倍。相對(duì)于冷啟動(dòng)調(diào)用,熱調(diào)用(即請(qǐng)求到達(dá)時(shí)有可用實(shí)例)的準(zhǔn)備時(shí)間可以控制在亞毫秒級(jí)。在特定領(lǐng)域例如AI推理場(chǎng)景,冷啟動(dòng)調(diào)用導(dǎo)致的高時(shí)延問題則更為突出,例如,使用TensorFlow框架的啟動(dòng)以及讀取和加載模型可能需要消耗數(shù)秒或數(shù)十秒。來自:百科
- TensorFlow RNN Cell 源碼解析
- Tensorflow |(1)初識(shí)Tensorflow
- 鯤鵬KC1云服務(wù)器源碼方式安裝Tensorflow 1.13.1
- Tensorflow |(6)Tensorflow的IO操作
- tensorflow報(bào)錯(cuò):Failed to load the native TensorFlow runtime.
- 【TensorFlow】01 TensorFlow簡(jiǎn)介與Python基礎(chǔ)
- TensorFlow教程
- 《TensorFlow自然語言處理》—2.1.4 Cafe Le TensorFlow:使用類比理解TensorFlow
- TensorFlow Dropout
- Tensorflow入門