- tensorflow深度強(qiáng)化學(xué)習(xí) 內(nèi)容精選 換一換
-
領(lǐng)域,提供不同的處理算法。應(yīng)用使能層包含計(jì)算機(jī)視覺(jué)引擎、語(yǔ)言文字引擎以及通用業(yè)務(wù)執(zhí)行引擎等,其中: 1、計(jì)算機(jī)視覺(jué)引擎面向計(jì)算機(jī)視覺(jué)領(lǐng)域提供一些視頻或圖像處理的算法封裝,專門用來(lái)處理計(jì)算機(jī)視覺(jué)領(lǐng)域的算法和應(yīng)用。 2、語(yǔ)言文字引擎面向語(yǔ)音及其他領(lǐng)域,提供一些語(yǔ)音、文本等數(shù)據(jù)的基礎(chǔ)處來(lái)自:百科常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測(cè)、評(píng)價(jià)等結(jié)果。 業(yè)界主流的AI引擎有TensorFlow、Spark_MLlib、MXNet、Caffe、PyTorch、XGBoost-Sklearn等,大量的開(kāi)發(fā)者基于主流AI引擎,開(kāi)發(fā)并訓(xùn)練其業(yè)務(wù)所需的模型。來(lái)自:百科
- tensorflow深度強(qiáng)化學(xué)習(xí) 相關(guān)內(nèi)容
-
AI基礎(chǔ)課程--常用框架工具 AI基礎(chǔ)課程--概覽 AI基礎(chǔ)課程--Python編程知識(shí) AI基礎(chǔ)課程--數(shù)學(xué)基礎(chǔ)知識(shí) AI基礎(chǔ)課程--常用框架工具 技術(shù)領(lǐng)域 技術(shù)領(lǐng)域 AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò)來(lái)自:專題計(jì)算能力,可以使用P1型云服務(wù)器。常用的軟件支持列表如下: Tensorflow、Caffe、PyTorch、MXNet等深度學(xué)習(xí)框架 RedShift for Autodesk 3dsMax、V-Ray for 3ds Max Agisoft PhotoScan MapD 彈性云服務(wù)器來(lái)自:百科
- tensorflow深度強(qiáng)化學(xué)習(xí) 更多內(nèi)容
-
。 3、訓(xùn)練任務(wù)快速部署:客戶進(jìn)行AI強(qiáng)化學(xué)習(xí)時(shí),需要短時(shí)間(10mins)拉起上萬(wàn)核CPU,對(duì)動(dòng)態(tài)擴(kuò)容能力要求較高。 競(jìng)享實(shí)例的應(yīng)用 該AI學(xué)習(xí)引擎采用競(jìng)享實(shí)例提供CPU資源。得益于競(jìng)享實(shí)例的快速擴(kuò)容與成本優(yōu)勢(shì),引擎可以短時(shí)間生成超大規(guī)模AI(Actor)同時(shí)執(zhí)行更多的策略,縮來(lái)自:專題
華為云計(jì)算 云知識(shí) 大V講堂——神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索 大V講堂——神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索 時(shí)間:2020-12-14 10:07:11 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索是當(dāng)前深度學(xué)習(xí)最熱門的話題之一,已經(jīng)成為了一大研究潮流。本課程將介紹神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索的理論基礎(chǔ)、應(yīng)用和發(fā)展現(xiàn)狀。 課程簡(jiǎn)介 神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索(NAS)來(lái)自:百科
功能,均可以通過(guò)web界面由用戶自助進(jìn)行操作。 支持VPC 支持通過(guò)VPC內(nèi)的私有網(wǎng)絡(luò),與E CS 之間內(nèi)網(wǎng)互通; 易用性 支持TensorFlow、Caffe等流行框架 支持k8s/Swarm,使用戶能夠非常簡(jiǎn)便的搭建、管理計(jì)算集群。 未來(lái)支持主流框架鏡像、集群自動(dòng)化發(fā)放 存儲(chǔ) 支來(lái)自:百科
,機(jī)載數(shù)據(jù)、文本數(shù)據(jù)、音頻數(shù)據(jù)、視頻數(shù)據(jù)等空管數(shù)據(jù)融合,有效支撐空管業(yè)務(wù)。 空管數(shù)據(jù)智能化,輔助業(yè)務(wù)決策 利用空管大數(shù)據(jù)融合,基于深度學(xué)習(xí)、強(qiáng)化學(xué)習(xí)等方法,面向智能化沖突管理、智能化空中交通流量管理、智能化規(guī)劃管理、智能化進(jìn)離場(chǎng)排序、智能化機(jī)場(chǎng)運(yùn)行等場(chǎng)景,輔助業(yè)務(wù)決策。 數(shù)據(jù)創(chuàng)新應(yīng)用,打造智慧化空管來(lái)自:百科
。 3、訓(xùn)練任務(wù)快速部署:客戶進(jìn)行AI強(qiáng)化學(xué)習(xí)時(shí),需要短時(shí)間(10mins)拉起上萬(wàn)核CPU,對(duì)動(dòng)態(tài)擴(kuò)容能力要求較高。 競(jìng)享實(shí)例的應(yīng)用 該AI學(xué)習(xí)引擎采用競(jìng)享實(shí)例提供CPU資源。得益于競(jìng)享實(shí)例的快速擴(kuò)容與成本優(yōu)勢(shì),引擎可以短時(shí)間生成超大規(guī)模AI(Actor)同時(shí)執(zhí)行更多的策略,縮來(lái)自:專題
。 3、訓(xùn)練任務(wù)快速部署:客戶進(jìn)行AI強(qiáng)化學(xué)習(xí)時(shí),需要短時(shí)間(10mins)拉起上萬(wàn)核CPU,對(duì)動(dòng)態(tài)擴(kuò)容能力要求較高。 競(jìng)享實(shí)例的應(yīng)用 該AI學(xué)習(xí)引擎采用競(jìng)享實(shí)例提供CPU資源。得益于競(jìng)享實(shí)例的快速擴(kuò)容與成本優(yōu)勢(shì),引擎可以短時(shí)間生成超大規(guī)模AI(Actor)同時(shí)執(zhí)行更多的策略,縮來(lái)自:專題
- 【強(qiáng)化學(xué)習(xí)基礎(chǔ)】深度強(qiáng)化學(xué)習(xí)介紹
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2.4 TensorFlow
- TF學(xué)習(xí)——TensorFlow:深度學(xué)習(xí)框架TensorFlow & TensorFlow-GPU的簡(jiǎn)介、安裝詳細(xì)攻略
- 強(qiáng)化學(xué)習(xí)算法中深度強(qiáng)化學(xué)習(xí)(Deep Reinforcement Learning)
- 深度強(qiáng)化學(xué)習(xí)模型優(yōu)化算法綜述
- 深度學(xué)習(xí)算法中的深度強(qiáng)化學(xué)習(xí)(Deep Reinforcement Learning)
- TensorFlow vs. PyTorch:深度學(xué)習(xí)框架之爭(zhēng)
- 深度學(xué)習(xí)框架(如:Pytorch、Tensorflow、Caffe...)
- 利用深度強(qiáng)化學(xué)習(xí)優(yōu)化鉆井過(guò)程
- 深度強(qiáng)化學(xué)習(xí):原理、算法與應(yīng)用
- Tensorflow訓(xùn)練
- 深度診斷ECS
- 華為人工智能工程師培訓(xùn)
- 部署NGC容器環(huán)境以構(gòu)建深度學(xué)習(xí)開(kāi)發(fā)環(huán)境
- Tensorflow算子邊界
- 使用Tensorflow訓(xùn)練神經(jīng)網(wǎng)絡(luò)
- 開(kāi)發(fā)深度學(xué)習(xí)模型
- 基于CodeArts IDE Online開(kāi)發(fā)并使用模型
- 在CCE集群中部署使用Tensorflow
- moxing.tensorflow是否包含整個(gè)TensorFlow,如何對(duì)生成的checkpoint進(jìn)行本地Fine Tune?