- 深度學(xué)習(xí)與強(qiáng)化學(xué)習(xí) 內(nèi)容精選 換一換
-
來自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見的問題。 課程大綱 1. 深度學(xué)習(xí)簡介 2. 訓(xùn)練法則來自:百科
- 深度學(xué)習(xí)與強(qiáng)化學(xué)習(xí) 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科
- 深度學(xué)習(xí)與強(qiáng)化學(xué)習(xí) 更多內(nèi)容
-
宅客學(xué)院在線平臺網(wǎng)絡(luò)人工智能課程介紹及7天實(shí)戰(zhàn)、人才測評。 內(nèi)容大綱: 1、人工智能基本知識體系; 2、機(jī)器學(xué)習(xí)基礎(chǔ)與實(shí)踐; 3、深度學(xué)習(xí)基礎(chǔ)與實(shí)踐; 4、強(qiáng)化學(xué)習(xí)基礎(chǔ)與實(shí)踐; 5、Vega簡介、架構(gòu)和Pipeline; 6、網(wǎng)絡(luò)人工智能AutoML簡介; 7、電信領(lǐng)域業(yè)務(wù)問題和挑戰(zhàn)及Vega在電信領(lǐng)域中的應(yīng)用;來自:百科
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:強(qiáng)化學(xué)習(xí)與深度Q網(wǎng)絡(luò)(DQN)
- 【強(qiáng)化學(xué)習(xí)基礎(chǔ)】深度強(qiáng)化學(xué)習(xí)介紹
- 深度學(xué)習(xí)算法中的深度強(qiáng)化學(xué)習(xí)(Deep Reinforcement Learning)
- 深度強(qiáng)化學(xué)習(xí):原理、算法與應(yīng)用
- 從Q - learning到深度強(qiáng)化學(xué)習(xí)的技術(shù)演進(jìn)
- 強(qiáng)化學(xué)習(xí)算法中深度強(qiáng)化學(xué)習(xí)(Deep Reinforcement Learning)
- 學(xué)習(xí)《強(qiáng)化學(xué)習(xí)的落地實(shí)踐》有感
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 自然語言處理與強(qiáng)化學(xué)習(xí)
- 深度學(xué)習(xí)+遷移學(xué)習(xí)+強(qiáng)化學(xué)習(xí)的區(qū)別分享
- 深度強(qiáng)化學(xué)習(xí)模型優(yōu)化算法綜述