- 訓(xùn)練施工現(xiàn)場(chǎng)的AI模型 內(nèi)容精選 換一換
-
是唯一的,只有運(yùn)行時(shí)的容器能訪問(wèn)到。因此訓(xùn)練作業(yè)的“/cache”是安全的。 如何查看訓(xùn)練作業(yè)資源占用情況? 在ModelArts管理控制臺(tái),選擇“訓(xùn)練管理>訓(xùn)練作業(yè)”,進(jìn)入訓(xùn)練作業(yè)列表頁(yè)面。在訓(xùn)練作業(yè)列表中,單擊目標(biāo)作業(yè)名稱,查看該作業(yè)的詳情。您可以在“資源占用情況”頁(yè)簽查看到如下指標(biāo)信息。來(lái)自:專題') 訓(xùn)練作業(yè)的“/cache”目錄是否安全? ModelArts訓(xùn)練作業(yè)的程序運(yùn)行在容器中,容器掛載的目錄地址是唯一的,只有運(yùn)行時(shí)的容器能訪問(wèn)到。因此訓(xùn)練作業(yè)的“/cache”是安全的。 訓(xùn)練環(huán)境中不同規(guī)格資源“/cache”目錄的大小 在創(chuàng)建訓(xùn)練作業(yè)時(shí)可以根據(jù)訓(xùn)練作業(yè)的大小選擇CPU、GPU或者Ascend資源。來(lái)自:專題
- 訓(xùn)練施工現(xiàn)場(chǎng)的AI模型 相關(guān)內(nèi)容
-
什么是神經(jīng)語(yǔ)言模型 第4章 主流預(yù)訓(xùn)練語(yǔ)言模型介紹 第5章 華為在預(yù)訓(xùn)練語(yǔ)言模型領(lǐng)域的工作 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。 華為云將持續(xù)創(chuàng)新,攜手客戶、合作伙伴和開(kāi)發(fā)者,致來(lái)自:百科實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 了解MindSpore模型開(kāi)發(fā)和訓(xùn)練的基本方法,了解ModelArts創(chuàng)建訓(xùn)練作業(yè)的流程,實(shí)操M(fèi)indSpore模型開(kāi)發(fā),并在ModelArts平臺(tái)創(chuàng)建一個(gè)使用MindSpore作為AI引擎的訓(xùn)練作業(yè),完成訓(xùn)練任務(wù)。 實(shí)驗(yàn)摘要 操作前提:登錄華為云 1. 添加訪問(wèn)秘鑰來(lái)自:百科
- 訓(xùn)練施工現(xiàn)場(chǎng)的AI模型 更多內(nèi)容
-
實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 通過(guò)實(shí)操最終得到AI成功識(shí)別人車(chē)的結(jié)果。 實(shí)驗(yàn)摘要 1.準(zhǔn)備環(huán)境 2.創(chuàng)建 OBS 桶和目錄 3.拷貝數(shù)據(jù)集到OBS桶 4.創(chuàng)建訓(xùn)練作業(yè) 5.模型導(dǎo)入 6.模型部署 7.發(fā)起檢測(cè) 華為云 面向未來(lái)的智能世界,數(shù)字化是企業(yè)發(fā)展的必由之路。數(shù)字化成功的關(guān)鍵是以云原生的思維踐行云原生,全數(shù)字化、全云化、AI驅(qū)動(dòng),一切皆服務(wù)。來(lái)自:百科
架構(gòu)需要使用到大規(guī)模的計(jì)算集群(GPU/NPU服務(wù)器),集群中的服務(wù)器訪問(wèn)的數(shù)據(jù)來(lái)自一個(gè)統(tǒng)一的數(shù)據(jù)源,即一個(gè)共享的存儲(chǔ)空間。這種共享訪問(wèn)的數(shù)據(jù)有諸多好處,它可以保證不同服務(wù)器上訪問(wèn)數(shù)據(jù)的一致性,減少不同服務(wù)器上分別保留數(shù)據(jù)帶來(lái)的數(shù)據(jù)冗余等。另外以 AI 生態(tài)中非常流行的開(kāi)源深度學(xué)習(xí)框架Py來(lái)自:專題
資源受限:相對(duì)云上資源的海量易獲取,邊側(cè)資源受限(算力、供電、場(chǎng)地等均受限),建設(shè)與維護(hù)成本更高。 如何發(fā)揮邊緣計(jì)算的實(shí)時(shí)性和數(shù)據(jù)安全性,結(jié)合中心云的海量算力優(yōu)勢(shì),實(shí)現(xiàn)AI的邊云協(xié)同,就成了解決上述挑戰(zhàn)的關(guān)鍵課題。 內(nèi)容大綱: 1、業(yè)界邊緣AI遇到的挑戰(zhàn)和痛點(diǎn); 2、邊云協(xié)同AI訓(xùn)練概念及其使用場(chǎng)景、如何應(yīng)對(duì)邊緣AI痛點(diǎn);來(lái)自:百科
華為云計(jì)算 云知識(shí) 邏輯模型建設(shè)的方法 邏輯模型建設(shè)的方法 時(shí)間:2021-06-02 14:25:16 數(shù)據(jù)庫(kù) 在建設(shè)數(shù)據(jù)庫(kù)的邏輯模型時(shí),應(yīng)當(dāng)按照以下流程展開(kāi): 1. 建立命名規(guī)則; 2. 按照設(shè)計(jì)流程設(shè)計(jì)邏輯數(shù)據(jù)模型; 3. 確定實(shí)體和屬性; 4. 確定實(shí)體與實(shí)體之間的關(guān)系; 5. 補(bǔ)充實(shí)體的非健值屬性。來(lái)自:百科
云知識(shí) 數(shù)據(jù)模型類(lèi)型的對(duì)比 數(shù)據(jù)模型類(lèi)型的對(duì)比 時(shí)間:2021-05-21 11:05:46 數(shù)據(jù)庫(kù) 數(shù)據(jù)系統(tǒng) 數(shù)據(jù)管理 數(shù)據(jù)發(fā)展過(guò)程中產(chǎn)生過(guò)三種基本的數(shù)據(jù)模型:層次模型、網(wǎng)狀模型和關(guān)系模型。本文主要從數(shù)據(jù)結(jié)構(gòu)、數(shù)據(jù)操作、數(shù)據(jù)聯(lián)系及優(yōu)缺點(diǎn)幾個(gè)方面進(jìn)行對(duì)比分析。 層次模型和網(wǎng)狀模型查詢效來(lái)自:百科
on語(yǔ)言中的正則表達(dá)式進(jìn)行文本信息的匹配、多線程執(zhí)行任務(wù)的實(shí)現(xiàn)和Python中類(lèi)的魔法方法的使用。 基于深度學(xué)習(xí)算法的 語(yǔ)音識(shí)別 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:專題
- AI模型的訓(xùn)練過(guò)程步驟
- 網(wǎng)絡(luò)場(chǎng)景AI模型訓(xùn)練效率實(shí)踐
- 練習(xí)使用AI Gallery的預(yù)置算法訓(xùn)練模型
- kaldi語(yǔ)音識(shí)別 chain模型的訓(xùn)練流程
- AI Earth——AI模型訓(xùn)練:如何正確的進(jìn)行樣本點(diǎn)標(biāo)注?
- 《解鎖數(shù)據(jù)版本“魔方”:DataWorks護(hù)航AI模型訓(xùn)練》
- 人工智能LLM模型:獎(jiǎng)勵(lì)模型的訓(xùn)練、PPO 強(qiáng)化學(xué)習(xí)的訓(xùn)練、RLHF
- AI——自然語(yǔ)言預(yù)訓(xùn)練模型(Bert模型)之Transformer詳解
- sklearn模型的訓(xùn)練(上)
- 如何訓(xùn)練自己的語(yǔ)言模型:從數(shù)據(jù)收集到模型訓(xùn)練