- ai模型訓(xùn)練工具 內(nèi)容精選 換一換
-
ModelArts模型訓(xùn)練 ModelArts模型訓(xùn)練簡(jiǎn)介 ModelArts模型訓(xùn)練,俗稱“建模”,指通過(guò)分析手段、方法和技巧對(duì)準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測(cè)、評(píng)價(jià)等結(jié)果。來(lái)自:專題ModelArts訓(xùn)練管理 ModelArts訓(xùn)練管理 ModelArts訓(xùn)練管理模塊用于創(chuàng)建訓(xùn)練作業(yè)、查看訓(xùn)練情況以及管理訓(xùn)練版本。在訓(xùn)練模塊的統(tǒng)一管理下,方便用戶試驗(yàn)算法、數(shù)據(jù)和超參數(shù)的各種組合,便于追蹤最佳的模型與輸入配置,您可以通過(guò)不同版本間的評(píng)估指標(biāo)比較,確定最佳訓(xùn)練作業(yè)。 Mo來(lái)自:專題
- ai模型訓(xùn)練工具 相關(guān)內(nèi)容
-
使用MindSpore開(kāi)發(fā)訓(xùn)練模型識(shí)別手寫(xiě)數(shù)字 使用MindSpore開(kāi)發(fā)訓(xùn)練模型識(shí)別手寫(xiě)數(shù)字 時(shí)間:2020-12-01 14:59:14 本實(shí)驗(yàn)指導(dǎo)用戶在短時(shí)間內(nèi),了解和熟悉使用MindSpore進(jìn)行模型開(kāi)發(fā)和訓(xùn)練的基本流程,并利用ModelArts訓(xùn)練管理服務(wù)完成一次訓(xùn)練任務(wù)。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求來(lái)自:百科領(lǐng)域中,使用語(yǔ)言模型預(yù)訓(xùn)練方法在多項(xiàng)NLP任務(wù)中的水平都提高了一個(gè)等級(jí),學(xué)術(shù)界掀起了研究預(yù)訓(xùn)練語(yǔ)言模型的熱潮。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、理解語(yǔ)言模型和神經(jīng)語(yǔ)言模型。 2、了解主流預(yù)訓(xùn)練語(yǔ)言模型及之間的關(guān)系。 課程大綱 第1章 引言 第2章 什么是語(yǔ)言模型 第3章 什么是神經(jīng)語(yǔ)言模型來(lái)自:百科
- ai模型訓(xùn)練工具 更多內(nèi)容
-
云知識(shí) 基于ModelArts實(shí)現(xiàn)人車檢測(cè)模型訓(xùn)練和部署 基于ModelArts實(shí)現(xiàn)人車檢測(cè)模型訓(xùn)練和部署 時(shí)間:2020-12-02 11:21:12 本實(shí)驗(yàn)將指導(dǎo)用戶使用華為ModelArts預(yù)置算法構(gòu)建一個(gè)人車檢測(cè)模型的AI應(yīng)用。人車檢測(cè)模型可以應(yīng)用于自動(dòng)駕駛場(chǎng)景,檢測(cè)道路上人和車的位置。來(lái)自:百科
華為云計(jì)算 云知識(shí) AI基礎(chǔ)課程--常用框架工具 AI基礎(chǔ)課程--常用框架工具 時(shí)間:2020-12-16 09:46:51 Python作為目前最為流行的一種編程語(yǔ)言,擁有數(shù)十萬(wàn)的工具包,包含了非常多的領(lǐng)域,如:用于數(shù)據(jù)分析和計(jì)算的numpy、pandas; 數(shù)據(jù)可視化 工具matplotlib等。來(lái)自:百科
在本地準(zhǔn)備模型包,編寫(xiě)模型配置文件和模型推理代碼,將準(zhǔn)備好的模型包上傳至對(duì)象存儲(chǔ)服務(wù) OBS ,從OBS導(dǎo)入模型創(chuàng)建為AI應(yīng)用。 幫助文檔 收起 展開(kāi) AI Gellary訂閱模型 收起 展開(kāi) 在AI Gallery中,支持訂閱官方發(fā)布或者他人分享的模型,訂閱后的模型,可推送至ModelArts模型管理中,進(jìn)行統(tǒng)一管理。來(lái)自:專題
海量算力優(yōu)勢(shì),實(shí)現(xiàn)AI的邊云協(xié)同,就成了解決上述挑戰(zhàn)的關(guān)鍵課題。 內(nèi)容大綱: 1、業(yè)界邊緣AI遇到的挑戰(zhàn)和痛點(diǎn); 2、邊云協(xié)同AI訓(xùn)練概念及其使用場(chǎng)景、如何應(yīng)對(duì)邊緣AI痛點(diǎn); 2、KubeEdge邊云協(xié)同AI框架發(fā)布及其技術(shù)原理。 聽(tīng)眾收益: 1、了解邊緣 AI 的應(yīng)用場(chǎng)景、價(jià)值和技術(shù)挑戰(zhàn),與傳統(tǒng)離線來(lái)自:百科
GaussDB (DWS)工具 GaussDB(DWS)工具 Gauss(DWS)是一種基于華為云基礎(chǔ)架構(gòu)和平臺(tái)的在線數(shù)據(jù)處理數(shù)據(jù)庫(kù),提供即開(kāi)即用、可擴(kuò)展且完全托管的分析型數(shù)據(jù)庫(kù)服務(wù)。Gauss(DWS)提供包括連接工具、命令行工具、數(shù)據(jù)遷移工具等在內(nèi)的多種工具用于連接數(shù)據(jù)庫(kù)、遷移數(shù)據(jù)。來(lái)自:專題
華為云計(jì)算 云知識(shí) 邏輯模型和物理模型的對(duì)比 邏輯模型和物理模型的對(duì)比 時(shí)間:2021-06-02 14:37:26 數(shù)據(jù)庫(kù) 邏輯模型與物理模型的對(duì)比如下: 名稱定義:邏輯模型取名按照業(yè)務(wù)規(guī)則和現(xiàn)實(shí)世界對(duì)象的命名規(guī)范來(lái)取名;物理模型需要考慮到數(shù)據(jù)庫(kù)產(chǎn)品限制,比如不能出現(xiàn)非法字符,不能使用數(shù)據(jù)庫(kù)關(guān)鍵詞,不能超長(zhǎng)等約束;來(lái)自:百科
訪問(wèn) 模型開(kāi)發(fā)訓(xùn)練 提供網(wǎng)絡(luò)業(yè)務(wù)不同場(chǎng)景的AI模型開(kāi)發(fā)和訓(xùn)練(如流量預(yù)測(cè)模型,DC PUE優(yōu)化控制模型等),開(kāi)發(fā)者可以基于模型訓(xùn)練服務(wù),使用嵌入網(wǎng)絡(luò)經(jīng)驗(yàn)的訓(xùn)練平臺(tái)輸入數(shù)據(jù),快速完成模型的開(kāi)發(fā)和訓(xùn)練,形成精準(zhǔn)的模型,用于應(yīng)用服務(wù)開(kāi)發(fā) 優(yōu)勢(shì) 網(wǎng)絡(luò)經(jīng)驗(yàn)嵌入、助力開(kāi)發(fā)者快速完成模型開(kāi)發(fā)訓(xùn)練來(lái)自:百科
全域Serverless+AI,華為云加速大模型應(yīng)用開(kāi)發(fā) 全域Serverless+AI,華為云加速大模型應(yīng)用開(kāi)發(fā) 時(shí)間:2024-12-26 17:56:36 云日志 服務(wù) 應(yīng)用運(yùn)維管理 函數(shù)工作流 華為云首席產(chǎn)品官方國(guó)偉介紹,在AI時(shí)代背景下,軟件開(kāi)發(fā)的方式由以代碼為中心,走向以模型為中心,如來(lái)自:百科
- 如何使用開(kāi)源工具訓(xùn)練語(yǔ)言模型
- AI模型的訓(xùn)練過(guò)程步驟
- 網(wǎng)絡(luò)場(chǎng)景AI模型訓(xùn)練效率實(shí)踐
- 《解鎖數(shù)據(jù)新動(dòng)能:數(shù)據(jù)標(biāo)注工具與AI模型訓(xùn)練平臺(tái)的無(wú)縫對(duì)接熱潮》
- AI Earth——AI模型訓(xùn)練:如何正確的進(jìn)行樣本點(diǎn)標(biāo)注?
- kaldi語(yǔ)音識(shí)別 chain模型的訓(xùn)練流程
- 練習(xí)使用AI Gallery的預(yù)置算法訓(xùn)練模型
- 《解鎖數(shù)據(jù)版本“魔方”:DataWorks護(hù)航AI模型訓(xùn)練》
- AI——自然語(yǔ)言預(yù)訓(xùn)練模型(Bert模型)之Transformer詳解
- 大模型落地實(shí)戰(zhàn)指南:從選擇到訓(xùn)練,深度解析顯卡選型、模型訓(xùn)練技、模型選擇巧及AI未來(lái)展望---打造AI應(yīng)用新篇章