- 深度學(xué)習(xí)語(yǔ)言模型預(yù)訓(xùn)練 內(nèi)容精選 換一換
-
分類(lèi)”類(lèi)型的標(biāo)注作業(yè),單擊操作列的“智能標(biāo)注”啟動(dòng)智能標(biāo)注作業(yè)。 3.在彈出的“啟動(dòng)智能標(biāo)注”對(duì)話框中,選擇智能標(biāo)注類(lèi)型,可選“主動(dòng)學(xué)習(xí)”或者“預(yù)標(biāo)注”。 4.完成參數(shù)設(shè)置后,單擊“提交”,即可啟動(dòng)智能標(biāo)注。 5.在標(biāo)注作業(yè)列表中,單擊標(biāo)注作業(yè)名稱(chēng)進(jìn)入“標(biāo)注作業(yè)詳情”頁(yè)。 6.在來(lái)自:專(zhuān)題極致的冷啟動(dòng)、彈性及更智能的調(diào)度能力。 資源池化預(yù)熱、分層預(yù)加載與彈性水位控制:通過(guò)單實(shí)例多并發(fā)、分層預(yù)熱提升性能、降低成本。函數(shù)實(shí)例百毫秒冷啟動(dòng)時(shí)延,毫秒級(jí)彈性。 5.多維度結(jié)合的大文件加載加速能力。 高性能解壓縮轉(zhuǎn)換,降網(wǎng)絡(luò)開(kāi)銷(xiāo)、CPU解壓耗時(shí)。 共享內(nèi)存加速技術(shù),降解壓IO開(kāi)銷(xiāo)。 依賴包預(yù)加載,降低公共依賴的下載、解壓耗時(shí)來(lái)自:百科
- 深度學(xué)習(xí)語(yǔ)言模型預(yù)訓(xùn)練 相關(guān)內(nèi)容
-
優(yōu)好的離線模型。離線模型生成器主要用來(lái)生成可以高效執(zhí)行在昇騰AI處理器上的離線模型。 離線模型生成器的工作原理如上圖所示,在接收到原始模型后,對(duì)卷積神經(jīng)網(wǎng)絡(luò)模型進(jìn)行模型解析、量化、編譯和序列化四個(gè)步驟: 1、解析 在解析過(guò)程中,離線模型生成器支持不同框架下的原始網(wǎng)絡(luò)模型解析,提煉來(lái)自:百科管理效率。 核心功能: 單點(diǎn)抓拍、攝像頭獨(dú)立抓拍、電瓶車(chē)檢測(cè)、抓拍檢測(cè)電梯內(nèi)的電瓶車(chē); 產(chǎn)品特點(diǎn): 本算法使用了深度神經(jīng)網(wǎng)絡(luò)技術(shù),通過(guò)使用大量實(shí)際場(chǎng)景圖片訓(xùn)練得到的模型,實(shí)現(xiàn)對(duì)電瓶車(chē)的檢測(cè),具有速度快、準(zhǔn)確率高的特點(diǎn)。算法特別優(yōu)化了俯視視角下的目標(biāo)檢測(cè),更適合電梯內(nèi)的使用場(chǎng)景。標(biāo)來(lái)自:云商店
- 深度學(xué)習(xí)語(yǔ)言模型預(yù)訓(xùn)練 更多內(nèi)容
-
理后的視頻數(shù)據(jù)回傳到云端,在云端使用VAS視頻分析、機(jī)器學(xué)習(xí)等分析服務(wù)實(shí)現(xiàn) 人臉識(shí)別 ,人員軌跡管理,事件報(bào)警管理等功能。從而把被動(dòng)監(jiān)控變?yōu)橹鲃?dòng)分析與預(yù)警,在園區(qū)、住宅、商場(chǎng)和超市等視頻監(jiān)控場(chǎng)景實(shí)時(shí)感知異常事件,實(shí)現(xiàn)事前布防、預(yù)判,事中現(xiàn)場(chǎng)可視、集中指揮調(diào)度,事后可回溯、取證等業(yè)務(wù)優(yōu)勢(shì)。來(lái)自:百科華為云計(jì)算 云知識(shí) 什么是語(yǔ)言虛擬機(jī)? 什么是語(yǔ)言虛擬機(jī)? 時(shí)間:2021-03-09 16:50:53 AI開(kāi)發(fā)平臺(tái) 人工智能 開(kāi)發(fā)語(yǔ)言環(huán)境 虛擬機(jī)(Virtual Machine)是一種軟件對(duì)硬件的模擬實(shí)現(xiàn)。這個(gè)專(zhuān)用名詞被使用在兩個(gè)場(chǎng)景,一個(gè)是指整機(jī)虛擬機(jī)(例如VM Ware),另一個(gè)是編程語(yǔ)言虛擬機(jī)(例如JVM來(lái)自:百科通過(guò)系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書(shū)。 通過(guò)系列大數(shù)據(jù)分析與應(yīng)用的在線課程學(xué)習(xí),加上對(duì)大數(shù)據(jù)應(yīng)用學(xué)習(xí)的在線動(dòng)手實(shí)驗(yàn)環(huán)境提供,一站式在線學(xué)練考,零基礎(chǔ)學(xué)習(xí)前沿技術(shù),考取權(quán)威證書(shū)。 服務(wù)咨詢來(lái)自:專(zhuān)題云知識(shí) 什么是產(chǎn)品模型 什么是產(chǎn)品模型 時(shí)間:2020-09-09 14:43:48 產(chǎn)品模型用于描述設(shè)備具備的能力和特性。開(kāi)發(fā)者通過(guò)定義產(chǎn)品模型,在 物聯(lián)網(wǎng)平臺(tái) 構(gòu)建一款設(shè)備的抽象模型,使平臺(tái)理解該款設(shè)備支持的服務(wù)、屬性、命令等信息,如顏色、開(kāi)關(guān)等。當(dāng)定義完一款產(chǎn)品模型后,在進(jìn)行注冊(cè)設(shè)來(lái)自:百科! 即刻了解 CodeLabs訓(xùn)練營(yíng)(溪村) 參加CodeLabs訓(xùn)練營(yíng),學(xué)習(xí)盤(pán)古大模型、人工智能、數(shù)字人等20+ 華為云產(chǎn)品 最佳應(yīng)用實(shí)踐,深入了解華為云產(chǎn)品能力,現(xiàn)場(chǎng)技術(shù)支持即時(shí)進(jìn)行答疑解惑! 即刻了解 掃地僧見(jiàn)面會(huì) 快來(lái)與技術(shù)大咖面對(duì)面交流大模型技術(shù)及行業(yè)應(yīng)用、人工智能、鴻蒙、來(lái)自:專(zhuān)題I場(chǎng)景,需要幾十個(gè)AI模型開(kāi)發(fā)訓(xùn)練好幾個(gè)月,現(xiàn)在只需要一個(gè)大模型就可以開(kāi)發(fā)完成,訓(xùn)練時(shí)間只需幾天。原來(lái)需要成千上萬(wàn)張樣本開(kāi)發(fā)的場(chǎng)景,現(xiàn)在也只需要十位數(shù)。 同時(shí)通過(guò)AI算法的商店——AI Gallery解決AI模型開(kāi)發(fā)部署難、訓(xùn)練成本高的問(wèn)題,讓開(kāi)發(fā)不再是難題。ModelArts把常見(jiàn)的算法和工具放到了AI來(lái)自:百科下載路徑? 通過(guò)訓(xùn)練作業(yè)訓(xùn)練好的模型可以下載,然后將下載的模型上傳存儲(chǔ)至其他帳號(hào)對(duì)應(yīng)區(qū)域的 OBS 中。 獲取模型下載路徑 1、登錄ModelArts管理控制臺(tái),在左側(cè)導(dǎo)航欄中選擇“訓(xùn)練管理 > 訓(xùn)練作業(yè)”,進(jìn)入“訓(xùn)練作業(yè)”列表。 2、在訓(xùn)練作業(yè)列表中,單擊目標(biāo)訓(xùn)練作業(yè)名稱(chēng),查看該作業(yè)的詳情。來(lái)自:專(zhuān)題云上一站式自助服務(wù)平臺(tái),簡(jiǎn)單高效 云上一站式自助服務(wù)平臺(tái),簡(jiǎn)單高效 從模型訓(xùn)練到內(nèi)容生成,端到端自助服務(wù) 支持批量生成數(shù)字人訓(xùn)練,任務(wù)管理可視化 數(shù)字人口型更精準(zhǔn),業(yè)界領(lǐng)先 數(shù)字人口型更精準(zhǔn),業(yè)界領(lǐng)先 AI自矯正,口型精準(zhǔn)匹配準(zhǔn)確率95%+ 母語(yǔ)一次訓(xùn)練多語(yǔ)言適配,語(yǔ)言泛化能力強(qiáng) 數(shù)字人形象更真實(shí)、更自然 數(shù)字人形象更真實(shí)、更自然來(lái)自:專(zhuān)題大數(shù)據(jù)應(yīng)用范圍有哪些_ 大數(shù)據(jù)技術(shù)與應(yīng)用 要學(xué)習(xí)什么課程 高清點(diǎn)播服務(wù)器_ 視頻點(diǎn)播 是什么意思_ 視頻點(diǎn)播加速 VPC虛擬IP_虛擬IP是什么_Keepalived CDN 視頻服務(wù)器配置_什么是CDN服務(wù)_華為云CDN ModelArts模型訓(xùn)練_模型訓(xùn)練簡(jiǎn)介_(kāi)如何訓(xùn)練模型 主機(jī)安全_如何設(shè)置告警通知來(lái)自:專(zhuān)題
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 深度學(xué)習(xí)進(jìn)階篇-預(yù)訓(xùn)練模型1:預(yù)訓(xùn)練分詞Subword、ELMo、Transformer模型原理;結(jié)構(gòu);技巧以及應(yīng)用詳解
- 《預(yù)訓(xùn)練語(yǔ)言模型:開(kāi)啟智能時(shí)代的大門(mén)》
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 深度學(xué)習(xí)算法中的預(yù)訓(xùn)練(Pretraining)
- ALBERT:更少參數(shù)量的預(yù)訓(xùn)練語(yǔ)言模型
- 預(yù)訓(xùn)練模型發(fā)展歷史
- 預(yù)訓(xùn)練語(yǔ)音模型調(diào)研小結(jié)
- TinyBERT: 面向預(yù)訓(xùn)練語(yǔ)言模型的知識(shí)蒸餾方法
- AI——自然語(yǔ)言預(yù)訓(xùn)練模型(Bert模型)之Transformer詳解