- 深度學(xué)習(xí)環(huán)境的構(gòu)建 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科來(lái)自:百科
- 深度學(xué)習(xí)環(huán)境的構(gòu)建 相關(guān)內(nèi)容
-
本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科的深度學(xué)習(xí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級(jí)神經(jīng)網(wǎng)絡(luò) 第4章來(lái)自:百科
- 深度學(xué)習(xí)環(huán)境的構(gòu)建 更多內(nèi)容
-
云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科6、單擊“新建”完成編譯構(gòu)建任務(wù)配置。 7、在“構(gòu)建詳情”頁(yè)面,單擊頁(yè)面右上方的“執(zhí)行任務(wù)”。 出現(xiàn)以下頁(yè)面時(shí),表示構(gòu)建成功。單擊頁(yè)面右上方的“下載構(gòu)建包”,將打包好的軟件包下載到本地。 使用鯤鵬環(huán)境構(gòu)建常見(jiàn)問(wèn)題 使用鯤鵬環(huán)境構(gòu)建常見(jiàn)問(wèn)題 構(gòu)建時(shí)找不到必須的項(xiàng)目文件? 1、檢查項(xiàng)目中是否丟失構(gòu)建工具需要的構(gòu)建文件。來(lái)自:專題、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科資源凍結(jié)的類型有多種,最常見(jiàn)類型為欠費(fèi)凍結(jié)。 單擊了解資源凍結(jié)的類型、凍結(jié)后對(duì)續(xù)費(fèi)、退訂的影響。 GaussDB數(shù)據(jù)庫(kù) 的構(gòu)建-文檔下載 GaussDB 數(shù)據(jù)庫(kù)的構(gòu)建-開(kāi)發(fā)指南(分布式_2.x版本) 立即下載 GaussDB數(shù)據(jù)庫(kù)的構(gòu)建-用戶指南 立即下載 GaussDB數(shù)據(jù)庫(kù)的構(gòu)建-最佳實(shí)踐來(lái)自:專題降低成本:對(duì)于使用大規(guī)格函數(shù)進(jìn)行后端服務(wù)的代碼,無(wú)效請(qǐng)求可以直接由較小規(guī)格的鑒權(quán)函數(shù)攔截,降低大中規(guī)格資源服務(wù)的運(yùn)行成本; 創(chuàng)建鑒權(quán)函數(shù) 和普通函數(shù)的創(chuàng)建流程一樣,只需要注意響應(yīng)的格式,一個(gè)使用JWT 鑒權(quán)的簡(jiǎn)單案例如下。 編輯接口,配置自定義鑒權(quán) 編輯對(duì)應(yīng)的API,選擇自定義鑒權(quán),選擇到我們創(chuàng)建的函數(shù): 一個(gè)鑒權(quán)拒絕的示例如下:來(lái)自:百科用戶通過(guò)網(wǎng)絡(luò)接入云計(jì)算系統(tǒng),開(kāi)放的接口使得云計(jì)算系統(tǒng)更易于受到來(lái)自外部網(wǎng)絡(luò)的攻擊。而對(duì)最終用戶而言,使用云計(jì)算服務(wù)帶來(lái)的主要風(fēng)險(xiǎn)和威脅如下: 數(shù)據(jù)存放在云端無(wú)法控制的風(fēng)險(xiǎn)。 計(jì)算資源和數(shù)據(jù)完全由云計(jì)算服務(wù)提供商控制和管理帶來(lái)的風(fēng)險(xiǎn),包括提供商管理員非法侵入用戶系統(tǒng)的風(fēng)險(xiǎn);釋放計(jì)算資源或存儲(chǔ)來(lái)自:百科隨著云計(jì)算、大數(shù)據(jù)、人工智能等數(shù)字技術(shù)的廣泛使用,以數(shù)字技術(shù)為核心的數(shù)字經(jīng)濟(jì),正在成為我國(guó)經(jīng)濟(jì)增長(zhǎng)的新動(dòng)能。數(shù)字經(jīng)濟(jì)是信息和商務(wù)活動(dòng)全面數(shù)字化的全新社會(huì)政治與經(jīng)濟(jì)系統(tǒng),由此帶來(lái)整個(gè)經(jīng)濟(jì)環(huán)境和經(jīng)濟(jì)活動(dòng)的根本變化,數(shù)字經(jīng)濟(jì)正改變著社會(huì)的生產(chǎn)和生活方式。數(shù)字經(jīng)濟(jì)的蓬勃發(fā)展,使得各行各業(yè)無(wú)不進(jìn)行著數(shù)字化的轉(zhuǎn)變。 在來(lái)自:云商店
- 使用云容器引擎服務(wù)構(gòu)建深度學(xué)習(xí)環(huán)境
- 利用Docker構(gòu)建Ansible學(xué)習(xí)環(huán)境
- PyTorch 深度學(xué)習(xí)實(shí)戰(zhàn) | PyTorch 環(huán)境搭建
- 深度學(xué)習(xí)成長(zhǎng)體系的七步構(gòu)建方法
- 使用Docker構(gòu)建Ansible學(xué)習(xí)環(huán)境的最佳實(shí)踐
- Python深度學(xué)習(xí)環(huán)境配置(Pytorch、CUDA、cuDNN)
- 學(xué)會(huì)用 Docker 部署深度學(xué)習(xí)環(huán)境
- MATLAB與深度學(xué)習(xí)構(gòu)建神經(jīng)網(wǎng)絡(luò)的實(shí)用指南
- 《深入理解AutoML和AutoDL:構(gòu)建自動(dòng)化機(jī)器學(xué)習(xí)與深度學(xué)習(xí)平臺(tái)》 —1.4 深度學(xué)習(xí)的發(fā)展
- 探索基于深度學(xué)習(xí)的石油煉化過(guò)程環(huán)境保護(hù)