- 增強(qiáng)學(xué)習(xí)的深度和廣度 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、 語音識(shí)別 、自然語言處理等其他領(lǐng)域。來自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見的問題。 課程大綱 1. 深度學(xué)習(xí)簡(jiǎn)介 2. 訓(xùn)練法則來自:百科
- 增強(qiáng)學(xué)習(xí)的深度和廣度 相關(guān)內(nèi)容
-
云知識(shí) 基于深度學(xué)習(xí)算法的語音識(shí)別 基于深度學(xué)習(xí)算法的語音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語音數(shù)據(jù)集THCHS30進(jìn)行語音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:百科的深度學(xué)習(xí)。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級(jí)神經(jīng)網(wǎng)絡(luò) 第4章來自:百科
- 增強(qiáng)學(xué)習(xí)的深度和廣度 更多內(nèi)容
-
自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過程。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò) 華為云來自:百科
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科
GaussDB (DWS)應(yīng)用場(chǎng)景-增強(qiáng)型ETL和實(shí)時(shí)BI分析 GaussDB(DWS)應(yīng)用場(chǎng)景-增強(qiáng)型ETL和實(shí)時(shí)BI分析 時(shí)間:2021-06-17 12:54:27 數(shù)據(jù)庫 GaussDB(DWS)在增強(qiáng)型ETL和實(shí)時(shí)BI分析的應(yīng)用如下圖所示。分析過程有如下的特點(diǎn): 數(shù)據(jù)遷移:多數(shù)據(jù)源,高效批量、實(shí)時(shí)數(shù)據(jù)導(dǎo)入。來自:百科
需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類 3. 機(jī)器學(xué)習(xí)的整體流程來自:百科
HiLens 和ModelArts的關(guān)系 Huawei HiLens和ModelArts的關(guān)系 時(shí)間:2020-09-19 10:18:12 ModelArts是面向AI開發(fā)者的一站式開發(fā)平臺(tái),核心功能是模型訓(xùn)練。Huawei HiLens偏AI應(yīng)用開發(fā),并實(shí)現(xiàn)端云協(xié)同推理和管理。 您來自:百科
華為云計(jì)算 云知識(shí) OLTP和OLAP的比較 OLTP和OLAP的比較 時(shí)間:2021-07-01 10:45:23 數(shù)據(jù)庫 數(shù)據(jù)系統(tǒng) 云數(shù)據(jù)庫 數(shù)據(jù)倉庫 OLTP與OLAP主要從分析粒度、時(shí)效性、數(shù)據(jù)更新需求,驅(qū)動(dòng)方式等幾個(gè)內(nèi)容進(jìn)行對(duì)比分析。 文中課程 更多精彩課堂、微認(rèn)證、沙箱實(shí)驗(yàn),盡在華為云學(xué)院來自:百科
- 圖的遍歷 深度和廣度遍歷算法
- 深度學(xué)習(xí)煉丹-數(shù)據(jù)增強(qiáng)
- python算法實(shí)現(xiàn)深度優(yōu)先和廣度優(yōu)先
- 七十九、深度和廣度優(yōu)先搜索算法
- 深入淺出廣度和深度優(yōu)先搜索算法
- 圖的二種遍歷-廣度優(yōu)先遍歷和深度優(yōu)先遍歷
- 基于知識(shí)蒸餾與事實(shí)增強(qiáng)的深度學(xué)習(xí)模型實(shí)踐
- “深度優(yōu)先” 、 “廣度優(yōu)先” 究竟哪個(gè)更常用
- 深度感知:深度估計(jì)技術(shù)在增強(qiáng)現(xiàn)實(shí)中的應(yīng)用
- AI人工智能機(jī)器學(xué)習(xí)的類型:監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)、半監(jiān)督學(xué)習(xí)、增強(qiáng)學(xué)習(xí)和深度學(xué)習(xí)
- 開發(fā)深度學(xué)習(xí)模型
- 部署NGC容器環(huán)境以構(gòu)建深度學(xué)習(xí)開發(fā)環(huán)境
- 深度診斷ECS
- 認(rèn)證測(cè)試中心服務(wù)和傳統(tǒng)漏洞管理的主要區(qū)別是什么?
- 管理檢測(cè)與響應(yīng)服務(wù)和傳統(tǒng)漏洞掃描的主要區(qū)別是什么?
- 數(shù)據(jù)處理場(chǎng)景介紹
- 管理檢測(cè)與響應(yīng)服務(wù)和傳統(tǒng)漏洞掃描的主要區(qū)別是什么?
- 學(xué)習(xí)目標(biāo)
- 學(xué)習(xí)項(xiàng)目
- OPS01-01 建立持續(xù)學(xué)習(xí)和改進(jìn)的文化