- 用深度學(xué)習(xí)來(lái)獲取文本語(yǔ)義 內(nèi)容精選 換一換
-
類(lèi)別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科來(lái)自:百科
- 用深度學(xué)習(xí)來(lái)獲取文本語(yǔ)義 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類(lèi)等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出作為下一層的輸入,層層連接構(gòu)成深度神經(jīng)網(wǎng)絡(luò)。 1994年,Yann來(lái)自:百科
- 用深度學(xué)習(xí)來(lái)獲取文本語(yǔ)義 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科華為云計(jì)算 云知識(shí) 內(nèi)容審核 -文本是什么 內(nèi)容審核-文本是什么 時(shí)間:2020-09-16 10:28:34 內(nèi)容審核-文本Moderation(Text),基于華為自研的深度學(xué)習(xí)和內(nèi)容審核模型,可自動(dòng)識(shí)別出文本中出現(xiàn)的涉政、色情、廣告、辱罵、灌水等內(nèi)容,幫助客戶(hù)降低業(yè)務(wù)違規(guī)風(fēng)險(xiǎn),凈化網(wǎng)絡(luò)環(huán)境,提升用戶(hù)體驗(yàn)來(lái)自:百科本課程主要內(nèi)容包括:自然語(yǔ)言處理技術(shù)原理、實(shí)戰(zhàn):構(gòu)建專(zhuān)屬智能問(wèn)答機(jī)器人。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí)使學(xué)員掌握深度學(xué)習(xí)平臺(tái)應(yīng)用及入門(mén)深度學(xué)習(xí)。 課程大綱 第1節(jié) 導(dǎo)讀&往期內(nèi)容回顧 第2節(jié) 自然語(yǔ)言處理概述 第3節(jié) NLP技術(shù)及應(yīng)用介紹 第4節(jié) 文本語(yǔ)義分析演示 第5節(jié) 對(duì)話(huà)機(jī)器人演示 第6節(jié) 課程總結(jié) 華為云 面來(lái)自:百科并融合多個(gè)模型來(lái)提升回歸預(yù)測(cè)精度 分類(lèi)預(yù)測(cè) 用于離散值的預(yù)測(cè),如:不同類(lèi)別或標(biāo)簽;基于任務(wù)理解和模型選擇推薦能力,可自動(dòng)選擇多個(gè)分類(lèi)模型并基于動(dòng)態(tài)圖算法進(jìn)行融合,來(lái)提升預(yù)測(cè)性能 時(shí)間序列預(yù)測(cè) 利用過(guò)去數(shù)據(jù)預(yù)測(cè)未來(lái)趨勢(shì);可基于時(shí)間維度進(jìn)行自動(dòng)任務(wù)理解和輔助特征工程,來(lái)提升時(shí)間序列類(lèi)任務(wù)的精度來(lái)自:專(zhuān)題向量或特征集。這里應(yīng)用最多的是利用機(jī)器學(xué)習(xí)來(lái)實(shí)現(xiàn)。 Hash匹配相似度:對(duì)于多維向量數(shù)據(jù)相似度快速匹配,通常使用局部敏感hash算法LSH來(lái)實(shí)現(xiàn)。 跨架構(gòu)比較方法:對(duì)不同CPU架構(gòu)二進(jìn)制代碼的相似度比較,通常跨體系結(jié)構(gòu)方法通過(guò)計(jì)算語(yǔ)義相似性來(lái)實(shí)現(xiàn)。方法之一是通過(guò)轉(zhuǎn)換成與架構(gòu)無(wú)關(guān)的來(lái)自:百科通過(guò)全域感知服務(wù),原來(lái)需要人工巡檢的發(fā)現(xiàn)的問(wèn)題,現(xiàn)在都可以用AI感知來(lái)替代,而且準(zhǔn)確性還能提升。城市治理中的事項(xiàng)類(lèi)別非常多,但很多事件的數(shù)據(jù)量很少,用常規(guī)的方式訓(xùn)練模型一個(gè)算法耗時(shí)長(zhǎng),準(zhǔn)確率低。我們依托于預(yù)訓(xùn)練大模型、小樣本學(xué)習(xí)等技術(shù),可以對(duì)這種數(shù)據(jù)量小的城市問(wèn)題進(jìn)行模型訓(xùn)練學(xué)習(xí)。同時(shí)通過(guò)圖像生成等數(shù)據(jù)增強(qiáng)技來(lái)自:百科華為云計(jì)算 云知識(shí) 內(nèi)容審核-文本應(yīng)用場(chǎng)景 內(nèi)容審核-文本應(yīng)用場(chǎng)景 時(shí)間:2020-09-16 10:35:28 內(nèi)容審核-文本Moderation(Text),基于華為自研的深度學(xué)習(xí)和內(nèi)容審核模型,可自動(dòng)識(shí)別出文本中出現(xiàn)的涉政、色情、廣告、辱罵、灌水等內(nèi)容,幫助客戶(hù)降低業(yè)務(wù)違規(guī)風(fēng)險(xiǎn),凈化網(wǎng)絡(luò)環(huán)境,提升用戶(hù)體驗(yàn)來(lái)自:百科
- 深度學(xué)習(xí)|語(yǔ)義分割labelme的安裝和使用教程
- 深度學(xué)習(xí)核心技術(shù)精講100篇(四)-用預(yù)訓(xùn)練語(yǔ)言表征模型Bert抽取文本特征做語(yǔ)義相似度分析
- 《深度剖析:生成對(duì)抗網(wǎng)絡(luò)如何攻克文本生成的邏輯與語(yǔ)義難題》
- Python——獲取網(wǎng)頁(yè)文本內(nèi)容
- TensorFlow2深度學(xué)習(xí)實(shí)戰(zhàn)(十三): 語(yǔ)義分割算法 SegNet 實(shí)戰(zhàn)
- 深度學(xué)習(xí)在文本情感分析中的應(yīng)用
- text獲取文本元素
- 語(yǔ)義相似度與語(yǔ)言建模:理解文本的奧秘
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:圖像語(yǔ)義分割與對(duì)象檢測(cè)
- HTML深度解析:更改文本顏色