- 學(xué)生用于深度學(xué)習(xí)的配置 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來解釋說明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺、 語音識別 、自然語言處理等其他領(lǐng)域。來自:百科來自:百科
- 學(xué)生用于深度學(xué)習(xí)的配置 相關(guān)內(nèi)容
-
云知識 基于深度學(xué)習(xí)算法的語音識別 基于深度學(xué)習(xí)算法的語音識別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語音數(shù)據(jù)集THCHS30進(jìn)行語音識別的實(shí)戰(zhàn)演練,讓使用者在了解語音識別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來自:百科的深度學(xué)習(xí)。 課程目標(biāo) 通過本課程的學(xué)習(xí),使學(xué)員了解如下知識: 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級神經(jīng)網(wǎng)絡(luò) 第4章來自:百科
- 學(xué)生用于深度學(xué)習(xí)的配置 更多內(nèi)容
-
華為云計(jì)算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科
支持SSL加密連接和KMS 數(shù)據(jù)加密 等功能,確保數(shù)據(jù)安全;支持?jǐn)?shù)據(jù)庫主備架構(gòu),主機(jī)故障時(shí),備機(jī)自動(dòng)升級成主機(jī),確保業(yè)務(wù)連續(xù)性。 2. 超高性能 高性能、低延時(shí)的事務(wù)處理能力,典型配置下sysbench性能數(shù)據(jù)高出開源數(shù)據(jù)庫30%到50%。 文中課程 更多精彩課程、實(shí)驗(yàn)、微認(rèn)證,盡在??????????????來自:百科
華為云計(jì)算 云知識 云審計(jì) 服務(wù)適用于哪些場景 云審計(jì)服務(wù)適用于哪些場景 時(shí)間:2021-07-01 16:24:11 云審計(jì)服務(wù)適用于的場景包括以下這些: 1. 行業(yè)認(rèn)證 根據(jù)客戶業(yè)務(wù)類型,需要進(jìn)行業(yè)務(wù)云認(rèn)證。如金融云、可信云等等。 2. IT 合規(guī)審計(jì) 根據(jù)信息管理規(guī)范要求,重要數(shù)據(jù),系統(tǒng)訪問都要被實(shí)時(shí)記錄。來自:百科
華為云計(jì)算 云知識 適用于關(guān)系型和非關(guān)系型數(shù)據(jù)庫的 GaussDB 適用于關(guān)系型和非關(guān)系型數(shù)據(jù)庫的GaussDB 時(shí)間:2021-06-16 16:37:35 數(shù)據(jù)庫 數(shù)據(jù)庫在企業(yè)中有著重要的地位和應(yīng)用,華為 GaussDB數(shù)據(jù)庫 在鯤鵬生態(tài)中是主力場景之一。數(shù)據(jù)庫總體可以分為關(guān)系型數(shù)據(jù)庫和非關(guān)系型數(shù)據(jù)庫。來自:百科
、Hadoop計(jì)算密集型。推薦使用磁盤增強(qiáng)型 彈性云服務(wù)器 ,主要適用于需要對本地存儲上的極大型數(shù)據(jù)集進(jìn)行高性能順序讀寫訪問的工作負(fù)載,例如:Hadoop分布式計(jì)算,大規(guī)模的并行數(shù)據(jù)處理和日志處理應(yīng)用。主要的數(shù)據(jù)存儲是基于HDD的存儲實(shí)例,默認(rèn)配置最高10GE網(wǎng)絡(luò)能力,提供較高的PPS性能和網(wǎng)絡(luò)低延遲。最大可支持來自:專題
- 中科大研二學(xué)生,深度學(xué)習(xí)放棄,淺度學(xué)習(xí)入門!?
- 人工智能深度學(xué)習(xí)技術(shù)分析學(xué)生上課情況
- cuDNN:用于深度學(xué)習(xí)的高效原語【讀書筆記】
- Python深度學(xué)習(xí)環(huán)境配置(Pytorch、CUDA、cuDNN)
- 深度學(xué)習(xí)如何助力“運(yùn)維配置神器”?
- 走近深度學(xué)習(xí),認(rèn)識MoXing:優(yōu)化器配置
- 用于 Python 深度學(xué)習(xí)項(xiàng)目的 PyTorch 與 TensorFlow
- ModelArts自定義配置深度學(xué)習(xí)框架版本
- 深度學(xué)習(xí)的學(xué)習(xí)路線
- ModelArts Notebook自定義配置深度學(xué)習(xí)框架版本