- 深度引領(lǐng)深度學(xué)習(xí) 內(nèi)容精選 換一換
-
時(shí)間:2020-12-07 16:53:14 HCIP-AI EI Developer V2.0系列課程。神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)的重要基礎(chǔ),理解神經(jīng)網(wǎng)絡(luò)的基本原理、優(yōu)化目標(biāo)與實(shí)現(xiàn)方法是學(xué)習(xí)后面內(nèi)容的關(guān)鍵,這也是本課程的重點(diǎn)所在。 目標(biāo)學(xué)員 1、希望成為企業(yè)AI工程師的人員 2、希望獲得HCIP-AI來(lái)自:百科優(yōu)秀的超算生態(tài):擁有完善的超算生態(tài)環(huán)境,用戶(hù)可以構(gòu)建靈活彈性、高性能、高性?xún)r(jià)比的計(jì)算平臺(tái)。大量的HPC應(yīng)用程序和深度學(xué)習(xí)框架已經(jīng)可以運(yùn)行在P1實(shí)例上。 常規(guī)支持軟件列表 P1型云服務(wù)器主要用于計(jì)算加速場(chǎng)景,例如深度學(xué)習(xí)訓(xùn)練、推理、科學(xué)計(jì)算、分子建模、地震分析等場(chǎng)景。應(yīng)用軟件如果使用到GPU的CUDA并行計(jì)來(lái)自:百科
- 深度引領(lǐng)深度學(xué)習(xí) 相關(guān)內(nèi)容
-
GaussDB 學(xué)習(xí) GaussDB學(xué)習(xí) 云數(shù)據(jù)庫(kù) GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫(kù),具有高性能、高可用、高安全、低成本的特點(diǎn),企業(yè)核心數(shù)據(jù)上云信賴(lài)之選。如何快速學(xué)習(xí)和了解GaussDB呢? 云數(shù)據(jù)庫(kù)GaussDB,華為自主創(chuàng)新研發(fā)的分布式關(guān)系型數(shù)據(jù)庫(kù),具有高性能來(lái)自:專(zhuān)題1/Pi1實(shí)例,滿(mǎn)足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 G系列G3/G1提供多種顯存,滿(mǎn)足圖形圖像場(chǎng)景。P系列提供P2v/P1/Pi1實(shí)例,滿(mǎn)足科學(xué)計(jì)算、深度學(xué)習(xí)訓(xùn)練、推理等計(jì)算場(chǎng)景 生態(tài)優(yōu)秀 完善的生態(tài)環(huán)境,全面支持多種GPU應(yīng)用程序、深度學(xué)習(xí)框架。G系列支持OpenGL、來(lái)自:專(zhuān)題
- 深度引領(lǐng)深度學(xué)習(xí) 更多內(nèi)容
-
時(shí)間:2020-09-24 16:51:33 定制 語(yǔ)音識(shí)別 ,基于深度學(xué)習(xí)技術(shù),提供針對(duì)特定領(lǐng)域優(yōu)化的語(yǔ)音識(shí)別能力,并可自定義語(yǔ)言模型??筛鶕?jù)客戶(hù)特定需求深度定制,提升產(chǎn)品的人機(jī)交互體驗(yàn)。 產(chǎn)品特性 高識(shí)別率 基于深度學(xué)習(xí)技術(shù),對(duì)特定領(lǐng)域場(chǎng)景和語(yǔ)料進(jìn)行優(yōu)化,語(yǔ)音識(shí)別率達(dá)到業(yè)界領(lǐng)先 前沿技術(shù)來(lái)自:百科準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。 響應(yīng)速度快: 視頻直播 響應(yīng)速度速度小于0.1秒。 在線商城 智能審核商家/用戶(hù)上傳圖像,高效識(shí)別并預(yù)警不合規(guī)圖片,防止涉黃、涉暴、政治敏感類(lèi)圖像發(fā)布,降低人工審核成本和業(yè)務(wù)違規(guī)風(fēng)險(xiǎn)。 場(chǎng)景優(yōu)勢(shì)如下: 準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。來(lái)自:百科手把手教你玩轉(zhuǎn) 人臉識(shí)別 ,初探深度學(xué)習(xí)。 課程簡(jiǎn)介 本課程主要內(nèi)容包括:人臉識(shí)別原理、機(jī)器如何提取圖像的特征。 課程目標(biāo) 通過(guò)本課程學(xué)習(xí),了解機(jī)器學(xué)習(xí)的方法及快速掌握人臉識(shí)別應(yīng)用。 課程大綱 第1節(jié) 機(jī)器學(xué)習(xí)內(nèi)容回顧 第2節(jié) 機(jī)器是如何進(jìn)行圖像分類(lèi) 第3節(jié) 圖像的特征提取 第4節(jié) 初探深度學(xué)習(xí) 第5節(jié)來(lái)自:百科,減少火災(zāi)隱患。 方案優(yōu)勢(shì) 1. 行業(yè)應(yīng)用上算法開(kāi)發(fā)經(jīng)驗(yàn)積累豐富:算法會(huì)自動(dòng)利用相關(guān)先驗(yàn)知識(shí)對(duì)深度學(xué)習(xí)模型的檢測(cè)結(jié)果進(jìn)行判別,排除誤檢測(cè),準(zhǔn)確可靠。利用數(shù)字圖像處理技術(shù)和先進(jìn)的深度學(xué)習(xí)技術(shù),可對(duì)廚房進(jìn)行全天候智能監(jiān)測(cè)。 2. 針對(duì)客戶(hù)需求進(jìn)行定制化功能開(kāi)發(fā):針對(duì)不同行業(yè)應(yīng)用需求,來(lái)自:云商店時(shí)間:2020-10-30 15:12:04 圖像識(shí)別 ( Image Recognition ),基于深度學(xué)習(xí)和大數(shù)據(jù),利用計(jì)算機(jī)對(duì)圖像進(jìn)行分析和理解,以識(shí)別各種不同模式的目標(biāo)和對(duì)象的技術(shù)。基于深度學(xué)習(xí)技術(shù),可準(zhǔn)確識(shí)別圖像中的視覺(jué)內(nèi)容,提供多種物體、場(chǎng)景和概念標(biāo)簽,具備目標(biāo)檢測(cè)和屬性識(shí)別等能來(lái)自:百科!本期課程依托華為云EI服務(wù),帶領(lǐng)開(kāi)發(fā)者學(xué)習(xí)和體驗(yàn)多項(xiàng)國(guó)際前沿AI技術(shù)!期望通過(guò)開(kāi)發(fā)者的學(xué)習(xí),幫助企業(yè)解決實(shí)際問(wèn)題,實(shí)現(xiàn)生產(chǎn)自動(dòng)化、提升效率,同時(shí)這也是華為云奉獻(xiàn)給開(kāi)發(fā)者們的一場(chǎng)技術(shù)盛宴。 課程簡(jiǎn)介 本課程主要內(nèi)容包括:機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、 圖引擎 、圖像識(shí)別、 OCR文字識(shí)別 、人臉識(shí)別、視頻識(shí)別等前沿AI技術(shù)。來(lái)自:百科話機(jī)器人。 課程簡(jiǎn)介 本課程主要內(nèi)容包括:自然語(yǔ)言處理技術(shù)原理、實(shí)戰(zhàn):構(gòu)建專(zhuān)屬智能問(wèn)答機(jī)器人。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí)使學(xué)員掌握深度學(xué)習(xí)平臺(tái)應(yīng)用及入門(mén)深度學(xué)習(xí)。 課程大綱 第1節(jié) 導(dǎo)讀&往期內(nèi)容回顧 第2節(jié) 自然語(yǔ)言處理概述 第3節(jié) NLP技術(shù)及應(yīng)用介紹 第4節(jié) 文本語(yǔ)義分析演示來(lái)自:百科AI開(kāi)發(fā)的目的是將隱藏在一大批數(shù)據(jù)背后的信息集中處理并進(jìn)行提煉,從而總結(jié)得到研究對(duì)象的內(nèi)在規(guī)律。 對(duì)數(shù)據(jù)進(jìn)行分析,一般通過(guò)使用適當(dāng)?shù)慕y(tǒng)計(jì)、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等方法,對(duì)收集的大量數(shù)據(jù)進(jìn)行計(jì)算、分析、匯總和整理,以求最大化地開(kāi)發(fā)數(shù)據(jù)價(jià)值,發(fā)揮數(shù)據(jù)作用。 AI開(kāi)發(fā)的基本流程 AI開(kāi)發(fā)的基本流程通來(lái)自:百科
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.1.3 深度學(xué)習(xí)
- 深度學(xué)習(xí)
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2 深度學(xué)習(xí)框架
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 深度學(xué)習(xí)框架(PyTorch)
- 深度學(xué)習(xí)修煉(一)——從機(jī)器學(xué)習(xí)轉(zhuǎn)向深度學(xué)習(xí)
- 【深度學(xué)習(xí)】嘿馬深度學(xué)習(xí)筆記第1篇:深度學(xué)習(xí),1.1 深度學(xué)習(xí)與機(jī)器學(xué)習(xí)的區(qū)別【附代碼文檔】
- ArrayList 深度學(xué)習(xí)
- 深度學(xué)習(xí)介紹
- [深度學(xué)習(xí)]測(cè)距
- 深度學(xué)習(xí)概述
- 開(kāi)發(fā)深度學(xué)習(xí)模型
- 深度診斷ECS
- 部署NGC容器環(huán)境以構(gòu)建深度學(xué)習(xí)開(kāi)發(fā)環(huán)境
- 恢復(fù)歸檔或深度歸檔存儲(chǔ)對(duì)象
- IoTA.01010036 屬性引用深度超過(guò)配額限制
- 如何獲取Azure對(duì)象存儲(chǔ)深度采集所需憑證?
- 超過(guò)最大遞歸深度導(dǎo)致訓(xùn)練作業(yè)失敗
- 標(biāo)準(zhǔn)策略、極速策略和深度策略有哪些區(qū)別?
- IoTA.01010204 資產(chǎn)樹(shù)深度超過(guò)配額限制
- 主機(jī)深度采集成功,部分采集規(guī)格信息缺失