- 深度學(xué)習(xí)在醫(yī)學(xué)圖像 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識,其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí)在醫(yī)學(xué)圖像 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科域比較狹窄,實(shí)用性有限,但是在它基礎(chǔ)上發(fā)展起來的卷積神經(jīng)網(wǎng)絡(luò)等計(jì)算機(jī)視覺技術(shù)早已應(yīng)用在更為復(fù)雜的任務(wù)中,因此,手寫數(shù)字識別也成為計(jì)算機(jī)視覺領(lǐng)域衡量算法表現(xiàn)的一個(gè)基準(zhǔn)任務(wù)。所以,通過這一實(shí)踐場景來了解神經(jīng)網(wǎng)絡(luò)開發(fā)和訓(xùn)練,可謂再好不過了。如何使用深度學(xué)習(xí)框架MindSpore進(jìn)行模型來自:百科
- 深度學(xué)習(xí)在醫(yī)學(xué)圖像 更多內(nèi)容
-
AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) 時(shí)間:2020-12-15 15:23:12 深度學(xué)習(xí)是一種以人工神經(jīng)網(wǎng)絡(luò)為架構(gòu),對數(shù)據(jù)進(jìn)行表征學(xué)習(xí)的算法。目前,在圖像、 語音識別 、自然語言處理、強(qiáng)化學(xué)習(xí)等許多技術(shù)領(lǐng)域中,深度學(xué)習(xí)獲得了廣泛的應(yīng)用,并且在某些問題上已經(jīng)達(dá)到來自:百科華為云計(jì)算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科華為云計(jì)算 云知識 圖像識別服務(wù) 圖像識別服務(wù) 時(shí)間:2020-12-16 11:26:03 圖像識別( Image Recognition ),基于深度學(xué)習(xí)技術(shù),可準(zhǔn)確識別圖像中的視覺內(nèi)容,提供數(shù)萬種物體、場景和概念標(biāo)簽,具備目標(biāo)檢測和屬性識別等能力,幫助客戶準(zhǔn)確識別和理解圖像內(nèi)容。 課程簡介來自:百科。 應(yīng)用場景 內(nèi)容審核 -圖像 內(nèi)容審核-圖像有以下應(yīng)用場景: 視頻直播 在互動(dòng)直播場景中,成千上萬個(gè)房間并發(fā)直播,人工審核直播內(nèi)容幾乎不可能?;?span style='color:#C7000B'>圖像審核能力,可對所有房間內(nèi)容實(shí)時(shí)監(jiān)控,識別可疑房間并進(jìn)行預(yù)警。 場景優(yōu)勢如下: 準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測準(zhǔn)確率高。 響應(yīng)速度快:視頻直播響應(yīng)速度速度小于0來自:百科升業(yè)務(wù)效率。 內(nèi)容審核-圖像 內(nèi)容審核-圖像有以下應(yīng)用場景: 視頻直播 在互動(dòng)直播場景中,成千上萬個(gè)房間并發(fā)直播,人工審核直播內(nèi)容幾乎不可能?;?span style='color:#C7000B'>圖像審核能力,可對所有房間內(nèi)容實(shí)時(shí)監(jiān)控,識別可疑房間并進(jìn)行預(yù)警。 場景優(yōu)勢如下: 準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測準(zhǔn)確率高。 響應(yīng)速度快:視頻直播響應(yīng)速度速度小于0來自:百科該實(shí)驗(yàn)旨在指導(dǎo)用戶短時(shí)間內(nèi)熟悉并掌握故障識別與根因定位服務(wù)使用方式。 使用昇騰 彈性云服務(wù)器 實(shí)現(xiàn)黑白圖像上色應(yīng)用(C++) 本實(shí)驗(yàn)主要介紹基于AI1型服務(wù)器的黑白圖像上色項(xiàng)目,并部署在AI1型服務(wù)器上執(zhí)行的方法。 基于昇騰彈性云服務(wù)器的人工智能應(yīng)用開發(fā)實(shí)驗(yàn)(Python) 實(shí)驗(yàn)配置來自:專題
- 深度學(xué)習(xí)在醫(yī)學(xué)影像中的最新突破
- 深度學(xué)習(xí)實(shí)戰(zhàn)(六):使用 PyTorch 進(jìn)行 3D 醫(yī)學(xué)圖像分割
- 醫(yī)學(xué)圖像處理:在醫(yī)學(xué)領(lǐng)域中的創(chuàng)新應(yīng)用
- 醫(yī)學(xué)圖像配準(zhǔn)概覽和深度學(xué)習(xí)圖像配準(zhǔn)前沿?zé)狳c(diǎn)論文VoxelMorph
- 《深度學(xué)習(xí)之圖像識別:核心技術(shù)與案例實(shí)戰(zhàn)》 ——3.2.3 醫(yī)學(xué)數(shù)據(jù)集
- 《深度學(xué)習(xí)之圖像識別核心技術(shù)與案例實(shí)戰(zhàn)》—3.2.3 醫(yī)學(xué)數(shù)據(jù)集
- 深度學(xué)習(xí)在圖像識別方面的應(yīng)用
- 深度學(xué)習(xí)在圖像識別中的應(yīng)用
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:醫(yī)學(xué)影像識別與疾病預(yù)測
- 【醫(yī)學(xué)圖像分割】 基于matlab GVF算法醫(yī)學(xué)圖像分割【含Matlab源碼 1213期】