- 深度學(xué)習(xí)預(yù)訓(xùn)練是什么 內(nèi)容精選 換一換
-
來自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問題。 目標(biāo)學(xué)員來自:百科
- 深度學(xué)習(xí)預(yù)訓(xùn)練是什么 相關(guān)內(nèi)容
-
華為云計(jì)算 云知識(shí) 大V講堂——預(yù)訓(xùn)練語言模型 大V講堂——預(yù)訓(xùn)練語言模型 時(shí)間:2020-12-15 16:31:00 在自然語言處理(NLP)領(lǐng)域中,使用語言模型預(yù)訓(xùn)練方法在多項(xiàng)NLP任務(wù)上都獲得了不錯(cuò)的提升,廣泛受到了各界的關(guān)注。本課程將簡單介紹一下預(yù)訓(xùn)練的思想,幾個(gè)代表性模型和它們之間的關(guān)系。來自:百科大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來自:百科
- 深度學(xué)習(xí)預(yù)訓(xùn)練是什么 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來自:百科ModelArts模型訓(xùn)練 ModelArts模型訓(xùn)練簡介 ModelArts模型訓(xùn)練,俗稱“建模”,指通過分析手段、方法和技巧對(duì)準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測、評(píng)價(jià)等結(jié)果。來自:專題權(quán)完成操作。 創(chuàng)建訓(xùn)練作業(yè) 1、登錄ModelArts管理控制臺(tái)。 2、在左側(cè)導(dǎo)航欄中,選擇“訓(xùn)練管理 > 訓(xùn)練作業(yè)”,進(jìn)入“訓(xùn)練作業(yè)”列表。 3、單擊“創(chuàng)建訓(xùn)練作業(yè)”,進(jìn)入“創(chuàng)建訓(xùn)練作業(yè)”頁面,在該頁面填寫訓(xùn)練作業(yè)相關(guān)參數(shù)信息。 4、選擇訓(xùn)練資源的規(guī)格。訓(xùn)練參數(shù)的可選范圍與已有算法的使用約束保持一致。來自:專題發(fā)現(xiàn)還缺少某一部分?jǐn)?shù)據(jù)源,反復(fù)調(diào)整優(yōu)化。 3.訓(xùn)練模型 俗稱“建模”,指通過分析手段、方法和技巧對(duì)準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測、評(píng)價(jià)等結(jié)果。來自:百科
- 深度學(xué)習(xí)算法中的預(yù)訓(xùn)練(Pretraining)
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- BERT的預(yù)訓(xùn)練與微調(diào):深度解析
- 深度學(xué)習(xí)進(jìn)階篇-預(yù)訓(xùn)練模型1:預(yù)訓(xùn)練分詞Subword、ELMo、Transformer模型原理;結(jié)構(gòu);技巧以及應(yīng)用詳解
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 預(yù)訓(xùn)練模型發(fā)展歷史
- mxnet轉(zhuǎn)pytorch預(yù)訓(xùn)練
- 在 NLP 環(huán)境中,模型預(yù)訓(xùn)練和模型微調(diào)對(duì)于深度學(xué)習(xí)架構(gòu)和數(shù)據(jù)意味著什么?
- 淺談深度學(xué)習(xí)中的混合精度訓(xùn)練
- 預(yù)訓(xùn)練語音模型調(diào)研小結(jié)