- 深度學(xué)習(xí)引擎的終極形態(tài)是什么 內(nèi)容精選 換一換
-
征形成更抽象的高層代表屬性類別或特征,發(fā)現(xiàn)數(shù)據(jù)分布式特征表示。研究深入學(xué)習(xí)的動(dòng)機(jī)是建立模擬大腦分析學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò),它模擬大腦的機(jī)制來(lái)解釋說(shuō)明數(shù)據(jù),如圖像、聲音、文本等數(shù)據(jù)。 深度學(xué)習(xí)的典型模型:卷積神經(jīng)網(wǎng)絡(luò)模型、深度信任網(wǎng)絡(luò)模型、堆棧自編碼網(wǎng)絡(luò)模型。 深度學(xué)習(xí)的應(yīng)用:計(jì)算機(jī)視覺(jué)、 語(yǔ)音識(shí)別 、自然語(yǔ)言處理等其他領(lǐng)域。來(lái)自:百科來(lái)自:百科
- 深度學(xué)習(xí)引擎的終極形態(tài)是什么 相關(guān)內(nèi)容
-
本課程介紹了雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例,讓你對(duì)雙向深度學(xué)習(xí)有初步的認(rèn)知。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、認(rèn)識(shí)雙向智能。 2、了解深度雙向智能的理論、算法和應(yīng)用示例。 課程大綱 第1章 引言 第2章 雙向智能 第3章 深度雙向智能 華為云 面向未來(lái)的智能世界,數(shù)字化來(lái)自:百科的深度學(xué)習(xí)。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解如下知識(shí): 1、高效的結(jié)構(gòu)設(shè)計(jì)。 2、用NAS搜索輕量級(jí)網(wǎng)絡(luò)。 3、數(shù)據(jù)高效的模型壓縮。 4、1bit量化。 課程大綱 第1章 能耗高效的深度學(xué)習(xí)的背景 第2章 高效的神經(jīng)元和結(jié)構(gòu)設(shè)計(jì) 第3章 基于NAS的輕量級(jí)神經(jīng)網(wǎng)絡(luò) 第4章來(lái)自:百科
- 深度學(xué)習(xí)引擎的終極形態(tài)是什么 更多內(nèi)容
-
云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科更好的訓(xùn)練效果。 本次訓(xùn)練所使用的經(jīng)過(guò)數(shù)據(jù)增強(qiáng)的圖片 基于深度學(xué)習(xí)的識(shí)別方法 與傳統(tǒng)的機(jī)器學(xué)習(xí)使用簡(jiǎn)單模型執(zhí)行分類等任務(wù)不同,此次訓(xùn)練我們使用深度神經(jīng)網(wǎng)絡(luò)作為訓(xùn)練模型,即深度學(xué)習(xí)。深度學(xué)習(xí)通過(guò)人工神經(jīng)網(wǎng)絡(luò)來(lái)提取特征,不同層的輸出常被視為神經(jīng)網(wǎng)絡(luò)提取出的不同尺度的特征,上一層的輸出來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科的數(shù)據(jù)量,且提供了橫向擴(kuò)展的能力,可以通過(guò)擴(kuò)容的方式提高實(shí)例的數(shù)據(jù)容量和并發(fā)能力。 GaussDB 部署形態(tài):高可用 高可用(1主2備):采用一主兩備三節(jié)點(diǎn)的部署模式,包含一個(gè)分片。“主備版”:適用于數(shù)據(jù)量較小,且長(zhǎng)期來(lái)看數(shù)據(jù)不會(huì)大幅度增長(zhǎng),但是對(duì)數(shù)據(jù)的可靠性,以及業(yè)務(wù)的可用性有一來(lái)自:專題、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科語(yǔ)言編寫的TBE算子來(lái)構(gòu)建各種神經(jīng)網(wǎng)絡(luò)模型。同時(shí),TBE對(duì)算子也提供了封裝調(diào)用能力。在TBE中有一個(gè)優(yōu)化過(guò)的神經(jīng)網(wǎng)絡(luò)TBE標(biāo)準(zhǔn)算子庫(kù),開(kāi)發(fā)者可以直接利用標(biāo)準(zhǔn)算子庫(kù)中的算子實(shí)現(xiàn)高性能的神經(jīng)網(wǎng)絡(luò)計(jì)算。除此之外,TBE也提供了TBE算子的融合能力,為神經(jīng)網(wǎng)絡(luò)的優(yōu)化開(kāi)辟一條獨(dú)特的路徑。 張量加速引擎功能框架來(lái)自:百科立即購(gòu)買 幫助文檔 云容器引擎服務(wù)與其它云服務(wù)的關(guān)系 云容器引擎需要與其他云服務(wù)協(xié)同工作,云容器引擎需要獲取如下云服務(wù)資源的權(quán)限。 圖1 云容器引擎與其他服務(wù)的關(guān)系示意圖 國(guó)內(nèi)容器云與其它云服務(wù)的關(guān)系 表1 云容器引擎與其他服務(wù)的關(guān)系 服務(wù)名稱 云容器引擎與其他服務(wù)的關(guān)系 主要交互功能 彈性云服務(wù)器來(lái)自:專題與Kubernetes的角色訪問(wèn)控制(RBAC)的能力基礎(chǔ)上,打造的細(xì)粒度權(quán)限管理功能,支持基于 IAM 的細(xì)粒度權(quán)限控制和IAM Token認(rèn)證,支持集群級(jí)別、命名空間級(jí)別的權(quán)限控制,幫助用戶便捷靈活的對(duì)租戶下的IAM用戶、用戶組設(shè)定不同的操作權(quán)限。 CCE的權(quán)限管理包括“集群權(quán)限來(lái)自:專題
- 【C++深度剖析學(xué)習(xí)總結(jié)】 16 類的真正形態(tài)
- 機(jī)器學(xué)習(xí)是什么?AIGC又是什么?機(jī)器學(xué)習(xí)與AIGC未來(lái)科技的雙引擎
- 使用云容器引擎服務(wù)構(gòu)建深度學(xué)習(xí)環(huán)境
- 戴手環(huán)太土了?皮膚植入式傳感器才是健康監(jiān)測(cè)的終極形態(tài)
- 智能形狀匹配技術(shù)全解析:從經(jīng)典算法到深度學(xué)習(xí)與神經(jīng)形態(tài)計(jì)算
- 深度剖析ClickHouse的表引擎
- 《深度剖析:PEP8規(guī)范如何成就Python代碼的高階形態(tài)》
- 深度學(xué)習(xí)的學(xué)習(xí)路線
- 【項(xiàng)目】費(fèi)曼技巧,終極學(xué)習(xí)法
- 動(dòng)手學(xué)深度學(xué)習(xí):優(yōu)化與深度學(xué)習(xí)的關(guān)系