- 深度學(xué)習(xí)遙感圖像分類 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺翻譯、刷臉支付、人臉考勤……不知不覺,深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
- 深度學(xué)習(xí)遙感圖像分類 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò)來(lái)自:專題AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--機(jī)器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對(duì)抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強(qiáng)化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò)來(lái)自:專題全流程 AI開發(fā)平臺(tái) 介紹-ModelArts 第2章 AI模型開發(fā)-圖像分類 第3章 AI模型開發(fā)-物體檢測(cè) 第4章 AI進(jìn)階篇階段總結(jié)直播&問(wèn)題答疑 AI開發(fā)平臺(tái)ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式來(lái)自:百科分支。 課程簡(jiǎn)介 本課程包含了數(shù)字圖像基本原理,以及使用傳統(tǒng)方法和深度學(xué)習(xí)方法完成計(jì)算機(jī)視覺任務(wù)的方法以及應(yīng)用場(chǎng)景。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、掌握數(shù)字圖像的基礎(chǔ)知識(shí)和變換方法。 2、掌握圖像分類技術(shù)的原理和應(yīng)用場(chǎng)景。 3、掌握目標(biāo)檢測(cè)技術(shù)的原理和應(yīng)用場(chǎng)景。 4、掌握?qǐng)D像分割技術(shù)的原理和應(yīng)用場(chǎng)景。來(lái)自:百科手把手教你玩轉(zhuǎn) 人臉識(shí)別 ,初探深度學(xué)習(xí)。 課程簡(jiǎn)介 本課程主要內(nèi)容包括:人臉識(shí)別原理、機(jī)器如何提取圖像的特征。 課程目標(biāo) 通過(guò)本課程學(xué)習(xí),了解機(jī)器學(xué)習(xí)的方法及快速掌握人臉識(shí)別應(yīng)用。 課程大綱 第1節(jié) 機(jī)器學(xué)習(xí)內(nèi)容回顧 第2節(jié) 機(jī)器是如何進(jìn)行圖像分類 第3節(jié) 圖像的特征提取 第4節(jié) 初探深度學(xué)習(xí) 第5節(jié)來(lái)自:百科,所以在與很多圖像處理需求的客戶深度溝通后,其緊迫性與重要性不言而喻。如今國(guó)內(nèi)眾多圖像處理的公司越來(lái)越多,各種低價(jià)內(nèi)卷的情況經(jīng)常發(fā)生,而華為云 圖像識(shí)別 Image的出現(xiàn),讓我看到了解決這個(gè)問(wèn)題的可能性。 華為云圖像識(shí)別 Image 是一種基于深度學(xué)習(xí)技術(shù)的服務(wù),能夠準(zhǔn)確識(shí)別圖像中的來(lái)自:百科圖3運(yùn)營(yíng)商大數(shù)據(jù)分析 地理大數(shù)據(jù)分析 地理大數(shù)據(jù)分析 地理大數(shù)據(jù)具有大數(shù)據(jù)的相關(guān)特征,數(shù)據(jù)體量巨大,例如,全球衛(wèi)星遙感影像數(shù)據(jù)量達(dá)到PB級(jí)。數(shù)據(jù)種類多,有結(jié)構(gòu)化的遙感影像柵格數(shù)據(jù)、矢量數(shù)據(jù),非結(jié)構(gòu)化的空間位置數(shù)據(jù)、三維建模數(shù)據(jù);在大體量的地理大數(shù)據(jù)中,通過(guò)高效的挖掘工具或者挖掘方法實(shí)現(xiàn)價(jià)值提煉,是用戶非常關(guān)注的話題。來(lái)自:百科QL/ 數(shù)據(jù)可視化DLV 地理大數(shù)據(jù)分析 地理大數(shù)據(jù)分析 地理大數(shù)據(jù)具有大數(shù)據(jù)的相關(guān)特征,數(shù)據(jù)體量巨大,例如全球衛(wèi)星遙感影像數(shù)據(jù)量達(dá)到PB級(jí);數(shù)據(jù)種類多,有結(jié)構(gòu)化的遙感影像柵格數(shù)據(jù)、矢量數(shù)據(jù),非結(jié)構(gòu)化的空間位置數(shù)據(jù)、三維建模數(shù)據(jù);在大體量的地理大數(shù)據(jù)中,通過(guò)高效的挖掘工具或者挖掘方法實(shí)現(xiàn)價(jià)值提煉,是用戶非常關(guān)注的話題來(lái)自:百科
- OpenCV中的深度學(xué)習(xí)圖像分類
- 深度學(xué)習(xí)模型完成圖像分類小項(xiàng)目
- 深度學(xué)習(xí)實(shí)戰(zhàn)(二):AlexNet實(shí)現(xiàn)花圖像分類
- 使用深度學(xué)習(xí)進(jìn)行圖像分類的簡(jiǎn)介
- 深度學(xué)習(xí)matlab圖像分類,手把手教程
- 深度學(xué)習(xí)實(shí)戰(zhàn)(一):LeNet實(shí)現(xiàn)CIFAR-10圖像分類
- 使用TensorFlow構(gòu)建深度學(xué)習(xí)模型:圖像分類與目標(biāo)檢測(cè)
- 深度學(xué)習(xí)經(jīng)典網(wǎng)絡(luò)解析圖像分類篇(一):LeNet-5
- 深度學(xué)習(xí)入門篇,簡(jiǎn)單的實(shí)例講明白圖像分類。
- 實(shí)踐深度學(xué)習(xí):構(gòu)建一個(gè)簡(jiǎn)單的圖像分類器