- 深度學(xué)習(xí)訓(xùn)練模型以后識(shí)別速度 內(nèi)容精選 換一換
-
準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。 響應(yīng)速度快:?jiǎn)螐垐D像識(shí)別速度小于0.1秒。 內(nèi)容審核-文本 內(nèi)容審核 -文本有以下應(yīng)用場(chǎng)景: 電商評(píng)論篩查 審核電商網(wǎng)站產(chǎn)品評(píng)論,智能識(shí)別有色情、涉政、灌水等違規(guī)評(píng)論,保證良好用戶體驗(yàn)。 場(chǎng)景優(yōu)勢(shì)如下: 準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。來(lái)自:百科來(lái)自:百科
- 深度學(xué)習(xí)訓(xùn)練模型以后識(shí)別速度 相關(guān)內(nèi)容
-
是華為云與北大第一次在AI大模型上進(jìn)行產(chǎn)教融合,更是雙方對(duì)于推動(dòng)大模型研發(fā)與應(yīng)用,培養(yǎng)相關(guān)技術(shù)人才重要行動(dòng)。 北京大學(xué)軟件和微電子學(xué)院一直致力于培養(yǎng)高水平的軟件人才。通過與華為的合作,能夠?yàn)閷W(xué)生提供更多的實(shí)踐機(jī)會(huì)和學(xué)習(xí)資源,更好幫助學(xué)生了解大模型技術(shù)的最新進(jìn)展和應(yīng)用前景。同時(shí),學(xué)來(lái)自:百科09:28:38 深度神經(jīng)網(wǎng)絡(luò)讓機(jī)器擁有了視覺的能力,實(shí)戰(zhàn)派帶你探索深度學(xué)習(xí)! 課程簡(jiǎn)介 本課程主要內(nèi)容包括:深度學(xué)習(xí)平臺(tái)介紹、神經(jīng)網(wǎng)絡(luò)構(gòu)建多分類模型、經(jīng)典入門示例詳解:構(gòu)建手寫數(shù)字識(shí)別模型。 課程目標(biāo) 通過本課程的學(xué)習(xí)使學(xué)員掌握深度學(xué)習(xí)平臺(tái)應(yīng)用及入門深度學(xué)習(xí)。 課程大綱 第1節(jié)來(lái)自:百科
- 深度學(xué)習(xí)訓(xùn)練模型以后識(shí)別速度 更多內(nèi)容
-
低時(shí)延場(chǎng)景 深度學(xué)習(xí) 機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中訓(xùn)練過程需要處理海量的數(shù)據(jù),推理過程則希望極低的時(shí)延。同時(shí)機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中,F(xiàn)PGA以其高并行計(jì)算、硬件可編程、低功耗和低時(shí)延等優(yōu)勢(shì),可針對(duì)不同算法動(dòng)態(tài)編程設(shè)計(jì)最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中海量計(jì)算和低來(lái)自:百科
(2)7月1日大賽平臺(tái)開放無(wú)人車挑戰(zhàn)杯海選賽題,選手需要先在大賽平臺(tái)上學(xué)習(xí)ModelArts、 HiLens 、無(wú)人駕駛等相關(guān)知識(shí),然后可以使用最簡(jiǎn)單的基本數(shù)據(jù)集和預(yù)置算法進(jìn)行訓(xùn)練,也可以手動(dòng)或自動(dòng)擴(kuò)充訓(xùn)練集,并使用自定義算法。 模型提交時(shí)間段為7月10日-7月21日,7月21日12:00答題入口關(guān)閉。來(lái)自:百科
Networks,簡(jiǎn)稱DNN)技術(shù),大大提高了抗噪性能,使識(shí)別準(zhǔn)確率顯著提升。 識(shí)別速度快:把語(yǔ)言模型、詞典和聲學(xué)模型統(tǒng)一集成為一個(gè)大的神經(jīng)網(wǎng)絡(luò),同時(shí)在工程上進(jìn)行了大量的優(yōu)化,大幅提升解碼速度,使識(shí)別速度在業(yè)內(nèi)處于領(lǐng)先地位。 多種識(shí)別模式:支持多種實(shí)時(shí)語(yǔ)音識(shí)別模式,如流式識(shí)別、連續(xù)識(shí)別和實(shí)時(shí)識(shí)別模式,靈活適應(yīng)不同應(yīng)用場(chǎng)景。來(lái)自:專題
AI開發(fā)平臺(tái) ModelArts ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺(tái),為機(jī)器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動(dòng)化標(biāo)注、大規(guī)模分布式Training、自動(dòng)化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。 產(chǎn)品詳情立即注冊(cè)一元域名華為 云桌面 [免來(lái)自:百科
BS,從 OBS 導(dǎo)入模型創(chuàng)建為AI應(yīng)用。 制作模型包,則需要符合一定的模型包規(guī)范。模型包里面必需包含“model”文件夾,“model”文件夾下面放置模型文件,模型配置文件,模型推理代碼文件。 模型包結(jié)構(gòu)示例(以TensorFlow模型包結(jié)構(gòu)為例) 發(fā)布該模型時(shí)只需要指定到“ocr”目錄。來(lái)自:專題
隱私保護(hù)和網(wǎng)絡(luò)瓶頸等因素導(dǎo)致數(shù)據(jù)集天然分割, 傳統(tǒng)集中式AI模式在收斂速度, 數(shù)據(jù)傳輸量, 模型準(zhǔn)確度等方面仍存在巨大挑戰(zhàn)。 b) 邊緣數(shù)據(jù)樣本少,冷啟動(dòng)等問題,傳統(tǒng)大數(shù)據(jù)驅(qū)動(dòng)的統(tǒng)計(jì)ML方法無(wú)法收斂、效果差。 c) 數(shù)據(jù)異構(gòu):現(xiàn)有機(jī)器學(xué)習(xí)基于獨(dú)立同分布假設(shè),同一模型用在非獨(dú)立同分布的不同數(shù)據(jù)集的效果差別巨大。來(lái)自:百科
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型的分布式訓(xùn)練
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:視頻處理與動(dòng)作識(shí)別
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:分布式訓(xùn)練與模型并行化
- MCP 與深度學(xué)習(xí):加速模型訓(xùn)練的創(chuàng)新方法
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:智能醫(yī)療影像識(shí)別與診斷
- 深度學(xué)習(xí)圖像識(shí)別模型:遞歸神經(jīng)網(wǎng)絡(luò)
- 使用PyTorch解決多分類問題:構(gòu)建、訓(xùn)練和評(píng)估深度學(xué)習(xí)模型
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—3.1.3 迭代訓(xùn)練模型