Flexus L實例
即開即用,輕松運維,開啟簡單上云第一步
立即查看
免費體驗中心
免費領(lǐng)取體驗產(chǎn)品,快速開啟云上之旅
立即前往
企業(yè)級DeepSeek
支持API調(diào)用、知識庫和聯(lián)網(wǎng)搜索,滿足企業(yè)級業(yè)務(wù)需求
立即購買
免費體驗中心
免費領(lǐng)取體驗產(chǎn)品,快速開啟云上之旅
立即前往
企業(yè)級DeepSeek
支持API調(diào)用、知識庫和聯(lián)網(wǎng)搜索,滿足企業(yè)級業(yè)務(wù)需求
立即前往
Flexus L實例
即開即用,輕松運維,開啟簡單上云第一步
立即查看
免費體驗中心
免費領(lǐng)取體驗產(chǎn)品,快速開啟云上之旅
¥0.00
元
Flexus L實例
即開即用,輕松運維,開啟簡單上云第一步
立即前往
企業(yè)級DeepSeek
支持API調(diào)用、知識庫和聯(lián)網(wǎng)搜索,滿足企業(yè)級業(yè)務(wù)需求
立即購買
- 深度學(xué)習(xí)訓(xùn)練 平臺 內(nèi)容精選 換一換
-
ModelArts是面向開發(fā)者的一站式AI開發(fā)平臺,為機器學(xué)習(xí)與深度學(xué)習(xí)提供海量數(shù)據(jù)預(yù)處理及半自動化標注、大規(guī)模分布式Training、自動化模型生成,及端-邊-云模型按需部署能力,幫助用戶快速創(chuàng)建和部署模型,管理全周期AI工作流。 一站式 開“箱”即用,涵蓋AI開發(fā)全流程,包含數(shù)據(jù)處理、模型開發(fā)、訓(xùn)練、管理、部署功能,可靈活使用其中一個或多個功能。來自:百科AI技術(shù)領(lǐng)域課程--機器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--機器學(xué)習(xí) AI技術(shù)領(lǐng)域課程--深度學(xué)習(xí) AI技術(shù)領(lǐng)域課程--生成對抗網(wǎng)絡(luò) AI技術(shù)領(lǐng)域課程--強化學(xué)習(xí) AI技術(shù)領(lǐng)域課程--圖網(wǎng)絡(luò)來自:專題
- 深度學(xué)習(xí)訓(xùn)練 平臺 相關(guān)內(nèi)容
-
開發(fā)者可利用平臺的數(shù)據(jù)集訓(xùn)練自己的模型,或利用平臺中的算法框架定制出自己所需的功能。平臺核心功能主要包括樣本庫、算法庫、模型庫、訓(xùn)練平臺與推理服務(wù)平臺。其中樣本庫是存儲和管理各類型樣本資源的組件,為訓(xùn)練環(huán)境提供標注樣本,支撐模型訓(xùn)練;算法庫是提供開箱可用的神經(jīng)網(wǎng)絡(luò)算法倉庫,模型庫來自:其他高效的行業(yè)算法 多行業(yè):積累10+行業(yè)/場景的預(yù)訓(xùn)練模型。 高精度:大部分模型的準確率高于90%。 少數(shù)據(jù):訓(xùn)練所需的數(shù)據(jù)量更少。 智能標注:提升標注效率。 極致性能 依托ModelArts基礎(chǔ)平臺,深度軟硬件協(xié)同。 資源秒級調(diào)度,按需使用。 訓(xùn)練任務(wù)性能提升30%。 靈活開放 靈活的部來自:百科
- 深度學(xué)習(xí)訓(xùn)練 平臺 更多內(nèi)容
-
HiLens 支持的“om”格式后,在Huawei HiLens平臺上導(dǎo)入模型并新建技能,在其中自己編寫邏輯代碼,完成AI技能開發(fā),最后將技能部署到HiLens Kit上運行。 ModelArts自動學(xué)習(xí)功能訓(xùn)練生成的模型,暫時不支持用于Huawei HiLens平臺。 AI開發(fā)平臺ModelArts Model來自:百科sorFlow和PyTorch等主流深度學(xué)習(xí)框架。 Apulis AI Studio配套人工服務(wù)(H CS 版)的功能非常豐富。它包括 數(shù)據(jù)管理 平臺、人工智能平臺、數(shù)據(jù)標注平臺、模型工廠、推理中心、鏡像中心、運維中心和統(tǒng)一認證服務(wù) IAM 。數(shù)據(jù)管理平臺支持非結(jié)構(gòu)化和結(jié)構(gòu)化數(shù)據(jù)的統(tǒng)一管理,來自:專題請參考以下指導(dǎo)在ModelArts上訓(xùn)練模型: 1、您可以將訓(xùn)練數(shù)據(jù)導(dǎo)入至數(shù)據(jù)管理模塊進行數(shù)據(jù)標注或者數(shù)據(jù)預(yù)處理,也支持將已標注的數(shù)據(jù)上傳至 OBS 服務(wù)使用。 2、訓(xùn)練模型的算法實現(xiàn)與指導(dǎo)請參考準備算法章節(jié)。 3、使用控制臺創(chuàng)建訓(xùn)練作業(yè)請參考創(chuàng)建訓(xùn)練作業(yè)章節(jié)。 4、關(guān)于訓(xùn)練作業(yè)日志、訓(xùn)練資源占用等詳情請參考查看訓(xùn)練作業(yè)日志。來自:專題
看了本文的人還看了
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 淺談深度學(xué)習(xí)中的混合精度訓(xùn)練
- 深度學(xué)習(xí)算法中的預(yù)訓(xùn)練(Pretraining)
- 《駕馭MXNet:深度剖析分布式深度學(xué)習(xí)訓(xùn)練的高效之道》
- 使用Python實現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)筆記(四)訓(xùn)練集
- PyTorch 深度學(xué)習(xí)實戰(zhàn) |用 TensorFlow 訓(xùn)練神經(jīng)網(wǎng)絡(luò)
- 斯坦福DAWNBench:華為云ModelArts深度學(xué)習(xí)訓(xùn)練全球最快
- 使用Python實現(xiàn)深度學(xué)習(xí)模型的分布式訓(xùn)練
- 深度學(xué)習(xí)算法中的協(xié)同訓(xùn)練(Co-training)