- 深度學(xué)習(xí)圖片匹配 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類(lèi)型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí)圖片匹配 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺(jué)翻譯、刷臉支付、人臉考勤……不知不覺(jué),深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
- 深度學(xué)習(xí)圖片匹配 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。 響應(yīng)速度快: 視頻直播 響應(yīng)速度速度小于0.1秒。 在線商城 智能審核商家/用戶(hù)上傳圖像,高效識(shí)別并預(yù)警不合規(guī)圖片,防止涉黃、涉暴、政治敏感類(lèi)圖像發(fā)布,降低人工審核成本和業(yè)務(wù)違規(guī)風(fēng)險(xiǎn)。 場(chǎng)景優(yōu)勢(shì)如下: 準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。來(lái)自:百科準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。 響應(yīng)速度快:視頻直播響應(yīng)速度速度小于0.1秒。 在線商城 智能審核商家/用戶(hù)上傳圖像,高效識(shí)別并預(yù)警不合規(guī)圖片,防止涉黃、涉暴、政治敏感類(lèi)圖像發(fā)布,降低人工審核成本和業(yè)務(wù)違規(guī)風(fēng)險(xiǎn)。 場(chǎng)景優(yōu)勢(shì)如下: 準(zhǔn)確率高:基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高。來(lái)自:百科低時(shí)延場(chǎng)景 深度學(xué)習(xí) 機(jī)器學(xué)習(xí)中多層神經(jīng)網(wǎng)絡(luò)需要大量計(jì)算資源,其中訓(xùn)練過(guò)程需要處理海量的數(shù)據(jù),推理過(guò)程則希望極低的時(shí)延。同時(shí)機(jī)器學(xué)習(xí)算法還在不斷優(yōu)化中,F(xiàn)PGA以其高并行計(jì)算、硬件可編程、低功耗和低時(shí)延等優(yōu)勢(shì),可針對(duì)不同算法動(dòng)態(tài)編程設(shè)計(jì)最匹配的硬件電路,滿足機(jī)器學(xué)習(xí)中海量計(jì)算和低來(lái)自:百科表的電子化,恢復(fù)結(jié)構(gòu)化信息。 通用文字識(shí)別 提取圖片內(nèi)的文字及其對(duì)應(yīng)位置信息,并能夠根據(jù)文字在圖片中的位置進(jìn)行結(jié)構(gòu)化整理工作。 手寫(xiě)文字識(shí)別 識(shí)別文檔中的手寫(xiě)文字信息,并將識(shí)別的結(jié)構(gòu)化結(jié)果返回給用戶(hù)。 網(wǎng)絡(luò)圖片識(shí)別 自動(dòng)識(shí)別網(wǎng)絡(luò)圖片內(nèi)的所有文字及其對(duì)應(yīng)位置信息,并能根據(jù)識(shí)別出來(lái)的來(lái)自:專(zhuān)題需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:掌握學(xué)習(xí)算法定義與機(jī)器學(xué)習(xí)的流程;了解常用機(jī)器學(xué)習(xí)算法;了解超參數(shù)、梯度下降和交叉驗(yàn)證等概念。 課程大綱 1. 機(jī)器學(xué)習(xí)算法 2. 機(jī)器學(xué)習(xí)的分類(lèi) 3. 機(jī)器學(xué)習(xí)的整體流程來(lái)自:百科基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高 快速迭代 持續(xù)快速的迭代文本詞庫(kù),及時(shí)識(shí)別新型不合規(guī)內(nèi)容 注冊(cè)昵稱(chēng)審核 對(duì)網(wǎng)站的用戶(hù)注冊(cè)信息進(jìn)行智能審核,過(guò)濾包含廣告、反動(dòng)、涉黃等內(nèi)容的用戶(hù)昵稱(chēng) 優(yōu)勢(shì) 準(zhǔn)確率高 基于改進(jìn)的深度學(xué)習(xí)算法,檢測(cè)準(zhǔn)確率高 海量詞庫(kù) 內(nèi)置海量詞庫(kù),支持各種匹配規(guī)則 媒資 內(nèi)容審核來(lái)自:百科
- 立體匹配算法(局部立體匹配 、全局立體匹配 、深度學(xué)習(xí)立體匹配 )
- 深度學(xué)習(xí)圖片分類(lèi)CNN模板
- C# OpenCvSharp 通過(guò)特征點(diǎn)匹配圖片
- 智能形狀匹配技術(shù)全解析:從經(jīng)典算法到深度學(xué)習(xí)與神經(jīng)形態(tài)計(jì)算
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.1.3 深度學(xué)習(xí)
- PyTorch 深度學(xué)習(xí)實(shí)戰(zhàn) | 基于 ResNet 的花卉圖片分類(lèi)
- 深度學(xué)習(xí)
- 《MXNet深度學(xué)習(xí)實(shí)戰(zhàn)》—1.2 深度學(xué)習(xí)框架
- 深度神經(jīng)網(wǎng)絡(luò)在文本匹配中的應(yīng)用
- PyTorch深度學(xué)習(xí)實(shí)戰(zhàn) | 深度學(xué)習(xí)框架(PyTorch)