- 深度學(xué)習(xí)提高訓(xùn)練速度 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類(lèi)型以及深度學(xué)習(xí)工程中常見(jiàn)的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí)提高訓(xùn)練速度 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫(xiě)數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺(jué)翻譯、刷臉支付、人臉考勤……不知不覺(jué),深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
- 深度學(xué)習(xí)提高訓(xùn)練速度 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開(kāi)源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科
華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開(kāi)發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣(mài)機(jī)這一真實(shí)場(chǎng)景開(kāi)發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開(kāi)發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科
云知識(shí) 視頻點(diǎn)播 上傳加速方案,提高上傳質(zhì)量,速度提升60%! 視頻點(diǎn)播上傳加速方案,提高上傳質(zhì)量,速度提升60%! 時(shí)間:2023-02-13 14:04:54 【視頻點(diǎn)播服務(wù)最新活動(dòng)】 隨著互聯(lián)網(wǎng)的發(fā)展,來(lái)自用戶(hù)的音視頻媒體上傳體量日益增加,媒體上傳的速度正在成為影響用戶(hù)體驗(yàn)的關(guān)鍵來(lái)自:百科
、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科
ModelArts模型訓(xùn)練 ModelArts模型訓(xùn)練簡(jiǎn)介 ModelArts模型訓(xùn)練,俗稱(chēng)“建模”,指通過(guò)分析手段、方法和技巧對(duì)準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測(cè)、評(píng)價(jià)等結(jié)果。來(lái)自:專(zhuān)題
權(quán)完成操作。 創(chuàng)建訓(xùn)練作業(yè) 1、登錄ModelArts管理控制臺(tái)。 2、在左側(cè)導(dǎo)航欄中,選擇“訓(xùn)練管理 > 訓(xùn)練作業(yè)”,進(jìn)入“訓(xùn)練作業(yè)”列表。 3、單擊“創(chuàng)建訓(xùn)練作業(yè)”,進(jìn)入“創(chuàng)建訓(xùn)練作業(yè)”頁(yè)面,在該頁(yè)面填寫(xiě)訓(xùn)練作業(yè)相關(guān)參數(shù)信息。 4、選擇訓(xùn)練資源的規(guī)格。訓(xùn)練參數(shù)的可選范圍與已有算法的使用約束保持一致。來(lái)自:專(zhuān)題
到靠近用戶(hù)的位置,從而實(shí)現(xiàn)更快的加載速度。當(dāng)用戶(hù)請(qǐng)求訪問(wèn)網(wǎng)站時(shí), CDN 會(huì)根據(jù)用戶(hù)的地理位置選擇最近的服務(wù)器節(jié)點(diǎn),從而減少網(wǎng)絡(luò)延遲和帶寬消耗。這樣一來(lái),無(wú)論用戶(hù)身處何處,都能夠享受快速的加載速度,提高用戶(hù)體驗(yàn)。 華為云CDN可以快速提升網(wǎng)站的速度,主要是通過(guò)CDN將源站資源緩存到遍來(lái)自:百科
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 提高代碼速度的“正確姿勢(shì)”
- 提高網(wǎng)站頁(yè)面加載速度的方法
- 淺談深度學(xué)習(xí)中的混合精度訓(xùn)練
- 如何提高 Spring Boot 應(yīng)用的啟動(dòng)速度
- 如何提高Java Maven工程的編譯速度
- 深度學(xué)習(xí)算法中的預(yù)訓(xùn)練(Pretraining)
- 《駕馭MXNet:深度剖析分布式深度學(xué)習(xí)訓(xùn)練的高效之道》
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 訓(xùn)練CNN時(shí)常用調(diào)節(jié)學(xué)習(xí)率以提高模型性能小方法