- 深度學(xué)習(xí)數(shù)值代數(shù)與優(yōu)化 內(nèi)容精選 換一換
-
來自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見的問題。 課程大綱 1. 深度學(xué)習(xí)簡介 2. 訓(xùn)練法則來自:百科
- 深度學(xué)習(xí)數(shù)值代數(shù)與優(yōu)化 相關(guān)內(nèi)容
-
華為云計算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時間:2020-12-08 10:34:34 本課程旨基于自動售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科經(jīng)網(wǎng)絡(luò)開發(fā)和訓(xùn)練,可謂再好不過了。如何使用深度學(xué)習(xí)框架MindSpore進(jìn)行模型開發(fā)與訓(xùn)練?又如何在ModelArts平臺訓(xùn)練一個可以用于識別手寫數(shù)字的模型呢?讓我們來一探究竟吧。 數(shù)據(jù)集的選擇與準(zhǔn)備 機(jī)器學(xué)習(xí)中的傳統(tǒng)機(jī)器學(xué)習(xí)和深度學(xué)習(xí)都是數(shù)據(jù)驅(qū)動的研究領(lǐng)域,需要基于大量的歷史數(shù)來自:百科
- 深度學(xué)習(xí)數(shù)值代數(shù)與優(yōu)化 更多內(nèi)容
-
企業(yè)的信賴,廣泛應(yīng)用于金融、通信、交通等行業(yè),助力企業(yè)實(shí)現(xiàn)數(shù)字化轉(zhuǎn)型。在未來,華為云 FusionInsight 將繼續(xù)致力于大數(shù)據(jù)技術(shù)的研究與創(chuàng)新,秉持以客戶為中心的原則,為全球客戶提供更多優(yōu)質(zhì)的大數(shù)據(jù)服務(wù),推動大數(shù)據(jù)技術(shù)在全球范圍內(nèi)的發(fā)展。 最新文章 替換VolcanoJobre來自:百科
- 動手學(xué)深度學(xué)習(xí):優(yōu)化與深度學(xué)習(xí)的關(guān)系
- 深度學(xué)習(xí)基礎(chǔ)-優(yōu)化算法詳解
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:元學(xué)習(xí)與模型無關(guān)優(yōu)化(MAML)
- 《深度學(xué)習(xí)之TensorFlow入門、原理與進(jìn)階實(shí)戰(zhàn)》—3.3.7 優(yōu)化函數(shù),優(yōu)化目標(biāo)
- 深度學(xué)習(xí)優(yōu)化策略基礎(chǔ)算法、改進(jìn)方法與前沿創(chuàng)新
- XEngine-深度學(xué)習(xí)推理優(yōu)化
- 《深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)》——1.4 優(yōu)化深度學(xué)習(xí)的方法
- 《Keras深度學(xué)習(xí)實(shí)戰(zhàn)》—3.4 優(yōu)化
- 《深度學(xué)習(xí)之圖像識別:核心技術(shù)與案例實(shí)戰(zhàn)》 ——2 深度學(xué)習(xí)優(yōu)化基礎(chǔ)
- 《深度學(xué)習(xí)之圖像識別核心技術(shù)與案例實(shí)戰(zhàn)》—2 深度學(xué)習(xí)優(yōu)化基礎(chǔ)