- 深度學(xué)習(xí) 優(yōu)化與識別 內(nèi)容精選 換一換
-
經(jīng)網(wǎng)絡(luò)開發(fā)和訓(xùn)練,可謂再好不過了。如何使用深度學(xué)習(xí)框架MindSpore進(jìn)行模型開發(fā)與訓(xùn)練?又如何在ModelArts平臺訓(xùn)練一個可以用于識別手寫數(shù)字的模型呢?讓我們來一探究竟吧。 數(shù)據(jù)集的選擇與準(zhǔn)備 機(jī)器學(xué)習(xí)中的傳統(tǒng)機(jī)器學(xué)習(xí)和深度學(xué)習(xí)都是數(shù)據(jù)驅(qū)動的研究領(lǐng)域,需要基于大量的歷史數(shù)來自:百科來自:百科
- 深度學(xué)習(xí) 優(yōu)化與識別 相關(guān)內(nèi)容
-
工智能的相關(guān)內(nèi)容與應(yīng)用。 實(shí)驗(yàn)?zāi)繕?biāo)與基本要求 通過本實(shí)驗(yàn)將了解如何使用Keras和Tensorflow構(gòu)建DFCNN的語音識別神經(jīng)網(wǎng)絡(luò),并且熟悉整個處理流程,包括數(shù)據(jù)預(yù)處理、模型訓(xùn)練、模型保存和模型預(yù)測等環(huán)節(jié)。 實(shí)驗(yàn)摘要 實(shí)驗(yàn)準(zhǔn)備:登錄華為云賬號 1. OBS 準(zhǔn)備 2.ModelArts應(yīng)用來自:百科需要掌握人工智能技術(shù),希望具備及其學(xué)習(xí)和深度學(xué)習(xí)算法應(yīng)用能力,希望掌握華為人工智能相關(guān)產(chǎn)品技術(shù)的工程師 課程目標(biāo) 學(xué)完本課程后,您將能夠:描述神經(jīng)網(wǎng)絡(luò)的定義與發(fā)展;熟悉深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的重要“部件”;熟悉神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與優(yōu)化;描述深度學(xué)習(xí)中常見的問題。 課程大綱 1. 深度學(xué)習(xí)簡介 2. 訓(xùn)練法則來自:百科
- 深度學(xué)習(xí) 優(yōu)化與識別 更多內(nèi)容
-
華為云計(jì)算 云知識 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場景下的AI應(yīng)用與開發(fā) 時間:2020-12-08 10:34:34 本課程旨基于自動售賣機(jī)這一真實(shí)場景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺來自:百科
- 《深度學(xué)習(xí)之圖像識別:核心技術(shù)與案例實(shí)戰(zhàn)》 ——2 深度學(xué)習(xí)優(yōu)化基礎(chǔ)
- 《深度學(xué)習(xí)之圖像識別核心技術(shù)與案例實(shí)戰(zhàn)》—2 深度學(xué)習(xí)優(yōu)化基礎(chǔ)
- 動手學(xué)深度學(xué)習(xí):優(yōu)化與深度學(xué)習(xí)的關(guān)系
- 基于深度學(xué)習(xí)的油藏?cái)?shù)據(jù)分類與識別
- 《深度學(xué)習(xí)與圖像識別:原理與實(shí)踐》
- 《深度學(xué)習(xí)與圖像識別:原理與實(shí)踐》—1.2.8 文字識別
- 《深度學(xué)習(xí)之圖像識別核心技術(shù)與案例實(shí)戰(zhàn)》—2.2 網(wǎng)絡(luò)優(yōu)化參數(shù)
- 《深度學(xué)習(xí)之圖像識別:核心技術(shù)與案例實(shí)戰(zhàn)》 ——2.2 網(wǎng)絡(luò)優(yōu)化參數(shù)
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:視頻處理與動作識別
- 《深度學(xué)習(xí)之圖像識別:核心技術(shù)與案例實(shí)戰(zhàn)》 ——2.2.3 最優(yōu)化方法