- 深度學(xué)習(xí)模型壓縮前景 內(nèi)容精選 換一換
-
來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí)概覽 深度學(xué)習(xí)概覽 時(shí)間:2020-12-17 10:03:07 HCIA-AI V3.0系列課程。本課程主要講述深度學(xué)習(xí)相關(guān)的基本知識(shí),其中包括深度學(xué)習(xí)的發(fā)展歷程、深度學(xué)習(xí)神經(jīng) 網(wǎng)絡(luò)的部件、深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)不同的類型以及深度學(xué)習(xí)工程中常見的問(wèn)題。 目標(biāo)學(xué)員來(lái)自:百科
- 深度學(xué)習(xí)模型壓縮前景 相關(guān)內(nèi)容
-
大V講堂——雙向深度學(xué)習(xí) 大V講堂——雙向深度學(xué)習(xí) 時(shí)間:2020-12-09 14:52:19 以當(dāng)今研究趨勢(shì)由前饋學(xué)習(xí)重新轉(zhuǎn)入雙向?qū)ε枷到y(tǒng)為出發(fā)點(diǎn),從解碼與編碼、識(shí)別與重建、歸納與演繹、認(rèn)知與求解等角度,我們將概括地介紹雙向深度學(xué)習(xí)的歷史、發(fā)展現(xiàn)狀、應(yīng)用場(chǎng)景,著重介紹雙向深度學(xué)習(xí)理論、算法和應(yīng)用示例。來(lái)自:百科從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 從MindSpore手寫數(shù)字識(shí)別學(xué)習(xí)深度學(xué)習(xí) 時(shí)間:2020-11-23 16:08:48 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)分支之一,應(yīng)用日益廣泛。 語(yǔ)音識(shí)別 、自動(dòng) 機(jī)器翻譯 、即時(shí)視覺翻譯、刷臉支付、人臉考勤……不知不覺,深度學(xué)習(xí)已經(jīng)滲入到我們生活中的每個(gè)來(lái)自:百科
- 深度學(xué)習(xí)模型壓縮前景 更多內(nèi)容
-
華為云計(jì)算 云知識(shí) 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 基于深度學(xué)習(xí)算法的語(yǔ)音識(shí)別 時(shí)間:2020-12-01 09:50:45 利用新型的人工智能(深度學(xué)習(xí))算法,結(jié)合清華大學(xué)開源語(yǔ)音數(shù)據(jù)集THCHS30進(jìn)行語(yǔ)音識(shí)別的實(shí)戰(zhàn)演練,讓使用者在了解語(yǔ)音識(shí)別基本的原理與實(shí)戰(zhàn)的同時(shí),更好的了解人工智能的相關(guān)內(nèi)容與應(yīng)用。來(lái)自:百科華為云計(jì)算 云知識(shí) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 深度學(xué)習(xí):IoT場(chǎng)景下的AI應(yīng)用與開發(fā) 時(shí)間:2020-12-08 10:34:34 本課程旨基于自動(dòng)售賣機(jī)這一真實(shí)場(chǎng)景開發(fā),融合了物聯(lián)網(wǎng)與AI兩大技術(shù)方向,向您展示AI與IoT融合的場(chǎng)景運(yùn)用并解構(gòu)開發(fā)流程;從 物聯(lián)網(wǎng)平臺(tái)來(lái)自:百科、自動(dòng)機(jī)器學(xué)習(xí)等領(lǐng)域。 課程簡(jiǎn)介 本教程介紹了AI解決方案深度學(xué)習(xí)的發(fā)展前景及其面臨的巨大挑戰(zhàn);深度神經(jīng)網(wǎng)絡(luò)的基本單元組成和產(chǎn)生表達(dá)能力的方式及復(fù)雜的訓(xùn)練過(guò)程。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員: 1、了解深度學(xué)習(xí)。 2、了解深度神經(jīng)網(wǎng)絡(luò)。 課程大綱 第1章 深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)來(lái)自:百科LiteOS輕量級(jí)AI推理框架LiteAI,從模型轉(zhuǎn)換、優(yōu)化及執(zhí)行三個(gè)方面向開發(fā)者呈現(xiàn)如何在IoT設(shè)備上實(shí)現(xiàn)AI模型的推理全流程,并結(jié)合智能設(shè)備AI開發(fā)的案例,展示AI部署全過(guò)程。 l 針對(duì)IoT設(shè)備內(nèi)存空間小的問(wèn)題,LiteAI應(yīng)用了模型量化技術(shù),將模型參數(shù)從32比特浮點(diǎn)量化到8比特定點(diǎn),實(shí)現(xiàn)75%模型壓縮;實(shí)現(xiàn)更來(lái)自:百科實(shí)戰(zhàn)派帶你云上體驗(yàn)機(jī)器學(xué)習(xí),不會(huì)算法照樣玩轉(zhuǎn)AI。 課程簡(jiǎn)介 本課程主要內(nèi)容包括:人工智能發(fā)展歷程及行業(yè)應(yīng)用介紹,機(jī)器學(xué)習(xí)講解及實(shí)操演示、AI應(yīng)用學(xué)習(xí)方法介紹。 課程目標(biāo) 通過(guò)本課程的學(xué)習(xí),使學(xué)員了解行業(yè)趨勢(shì)及應(yīng)用前景、掌握機(jī)器學(xué)習(xí)的應(yīng)用,及如何進(jìn)行AI應(yīng)用的學(xué)習(xí)。 課程大綱 第1節(jié)來(lái)自:百科LiteOS輕量級(jí)AI推理框架LiteAI,從模型轉(zhuǎn)換、優(yōu)化及執(zhí)行三個(gè)方面向開發(fā)者呈現(xiàn)如何在IoT設(shè)備上實(shí)現(xiàn)AI模型的推理全流程,并結(jié)合智能設(shè)備AI開發(fā)的案例,展示AI部署全過(guò)程。 l 針對(duì)IoT設(shè)備內(nèi)存空間小的問(wèn)題,LiteAI應(yīng)用了模型量化技術(shù),將模型參數(shù)從32比特浮點(diǎn)量化到8比特定點(diǎn),實(shí)現(xiàn)75%模型壓縮;實(shí)現(xiàn)更來(lái)自:百科ModelArts模型訓(xùn)練 ModelArts模型訓(xùn)練簡(jiǎn)介 ModelArts模型訓(xùn)練,俗稱“建模”,指通過(guò)分析手段、方法和技巧對(duì)準(zhǔn)備好的數(shù)據(jù)進(jìn)行探索分析,從中發(fā)現(xiàn)因果關(guān)系、內(nèi)部聯(lián)系和業(yè)務(wù)規(guī)律,為商業(yè)目的提供決策參考。訓(xùn)練模型的結(jié)果通常是一個(gè)或多個(gè)機(jī)器學(xué)習(xí)或深度學(xué)習(xí)模型,模型可以應(yīng)用到新的數(shù)據(jù)中,得到預(yù)測(cè)、評(píng)價(jià)等結(jié)果。來(lái)自:專題華為云計(jì)算 云知識(shí) 邏輯模型和物理模型的對(duì)比 邏輯模型和物理模型的對(duì)比 時(shí)間:2021-06-02 14:37:26 數(shù)據(jù)庫(kù) 邏輯模型與物理模型的對(duì)比如下: 名稱定義:邏輯模型取名按照業(yè)務(wù)規(guī)則和現(xiàn)實(shí)世界對(duì)象的命名規(guī)范來(lái)取名;物理模型需要考慮到數(shù)據(jù)庫(kù)產(chǎn)品限制,比如不能出現(xiàn)非法字符,不能使用數(shù)據(jù)庫(kù)關(guān)鍵詞,不能超長(zhǎng)等約束;來(lái)自:百科如何做好IoT數(shù)據(jù)分析 資產(chǎn)模型 資產(chǎn)模型是IoT數(shù)據(jù)分析服務(wù)充分理解物聯(lián)網(wǎng)數(shù)據(jù)的基礎(chǔ)。構(gòu)建資產(chǎn)模型,就是構(gòu)建物與物,物與空間,物與人等復(fù)雜關(guān)系,將物聯(lián)網(wǎng)數(shù)據(jù)置于模型的上下文中去理解。資產(chǎn)模型就是物理世界的資產(chǎn)在數(shù)字世界中的映射,兩邊的數(shù)據(jù)準(zhǔn)實(shí)時(shí)同步,實(shí)現(xiàn)數(shù)字孿生。IoT數(shù)據(jù)分析服務(wù)基于資產(chǎn)模型抽象,來(lái)自:百科
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:知識(shí)蒸餾與模型壓縮
- 深度神經(jīng)網(wǎng)絡(luò)中的模型壓縮與加速技術(shù)
- 深度學(xué)習(xí)模型編譯技術(shù)
- 深度學(xué)習(xí)實(shí)踐篇[17]:模型壓縮技術(shù)、模型蒸餾算法:Patient-KD、DistilBERT、DynaBERT、TinyBER
- 深度學(xué)習(xí)模型訓(xùn)練流程思考
- 深度學(xué)習(xí)-通用模型調(diào)試技巧
- 利用深度學(xué)習(xí)建立流失模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:Transformer模型
- 使用Python實(shí)現(xiàn)深度學(xué)習(xí)模型:遷移學(xué)習(xí)與預(yù)訓(xùn)練模型
- 模型壓縮部署概述